
The De�nitive Guide

to

Yii 2.0

http://www.yiiframework.com/doc/guide

Qiang Xue,

Alexander Makarov,

Carsten Brandt,

Klimov Paul,

and

many contributors from the Yii community

This tutorial is released under the Terms of Yii Documentation.

Copyright 2014 Yii Software LLC. All Rights Reserved.

http://www.yiiframework.com/doc/guide
http://www.yiiframework.com/doc/terms/

Contents

1 Introduction 1

1.1 What is Yii . 1

1.2 Upgrading from Version 1.1 2

2 Getting Started 13

2.1 Installing Yii . 13

2.2 Running Applications . 19

2.3 Saying Hello . 23

2.4 Working with Forms . 26

2.5 Working with Databases . 32

2.6 Generating Code with Gii . 38

2.7 Looking Ahead . 44

3 Application Structure 47

3.1 Overview . 47

3.2 Entry Scripts . 48

3.3 Applications . 50

3.4 Application Components . 63

3.5 Controllers . 65

3.6 Models . 75

3.7 Views . 86

3.8 Modules . 100

3.9 Filters . 106

3.10 Widgets . 114

3.11 Assets . 118

3.12 Extensions . 137

4 Handling Requests 149

4.1 Overview . 149

4.2 Bootstrapping . 150

4.3 Routing and URL Creation 151

4.4 Requests . 166

4.5 Responses . 169

iii

iv CONTENTS

4.6 Sessions and Cookies . 175

4.7 Handling Errors . 182

4.8 Logging . 186

5 Key Concepts 195

5.1 Components . 195

5.2 Properties . 197

5.3 Events . 199

5.4 Behaviors . 206

5.5 Con�gurations . 213

5.6 Aliases . 218

5.7 Class Autoloading . 221

5.8 Service Locator . 223

5.9 Dependency Injection Container 225

6 Working with Databases 237

6.1 Database Access Objects . 237

6.2 Query Builder . 250

6.3 Active Record . 263

6.4 Database Migration . 296

7 Getting Data from Users 321

7.1 Creating Forms . 321

7.2 Validating Input . 326

7.3 Uploading Files . 342

7.4 Collecting tabular input . 347

7.5 Getting Data for Multiple Models 349

8 Displaying Data 351

8.1 Data Formatting . 351

8.2 Pagination . 356

8.3 Sorting . 358

8.4 Data Providers . 360

8.5 Data widgets . 366

8.6 Working with Client Scripts 380

8.7 Theming . 385

9 Security 389

9.1 Security . 389

9.2 Authentication . 389

9.3 Authorization . 394

9.4 Working with Passwords . 410

9.5 Cryptography . 410

9.6 Security best practices . 413

CONTENTS v

10 Caching 419

10.1 Caching . 419

10.2 Data Caching . 419

10.3 Fragment Caching . 428

10.4 Page Caching . 432

10.5 HTTP Caching . 433

11 RESTful Web Services 437

11.1 Quick Start . 437

11.2 Resources . 441

11.3 Controllers . 446

11.4 Routing . 450

11.5 Response Formatting . 452

11.6 Authentication . 455

11.7 Rate Limiting . 458

11.8 Versioning . 460

11.9 Error Handling . 462

12 Development Tools 465

13 Testing 469

13.1 Testing . 469

13.2 Testing environment setup . 471

13.3 Unit Tests . 472

13.4 Functional Tests . 472

13.5 Acceptance Tests . 473

13.6 Fixtures . 473

13.7 Managing Fixtures . 478

14 Special Topics 483

14.1 Creating your own Application structure 485

14.2 Console applications . 486

14.3 Core Validators . 493

14.4 Internationalization . 508

14.5 Mailing . 523

14.6 Performance Tuning . 527

14.7 Shared Hosting Environment 532

14.8 Using template engines . 534

14.9 Working with Third-Party Code 535

15 Widgets 539

vi CONTENTS

16 Helpers 549
16.1 Helpers . 549
16.2 ArrayHelper . 550
16.3 Html helper . 558
16.4 Url Helper . 566

Chapter 1

Introduction

1.1 What is Yii

Yii is a high performance, component-based PHP framework for rapidly
developing modern Web applications. The name Yii (pronounced Yee or [ji

:]) means �simple and evolutionary� in Chinese. It can also be thought of
as an acronym for Yes It Is!

1.1.1 What is Yii Best for?

Yii is a generic Web programming framework, meaning that it can be used
for developing all kinds of Web applications using PHP. Because of its
component-based architecture and sophisticated caching support, it is es-
pecially suitable for developing large-scale applications such as portals, for-
ums, content management systems (CMS), e-commerce projects, RESTful
Web services, and so on.

1.1.2 How does Yii Compare with Other Frameworks?

If you're already familiar with another framework, you may appreciate know-
ing how Yii compares:

• Like most PHP frameworks, Yii implements the MVC (Model-View-
Controller) architectural pattern and promotes code organization based
on that pattern.

• Yii takes the philosophy that code should be written in a simple yet
elegant way. Yii will never try to over-design things mainly for the
purpose of strictly following some design pattern.

• Yii is a full-stack framework providing many proven and ready-to-
use features: query builders and ActiveRecord for both relational and
NoSQL databases; RESTful API development support; multi-tier cach-
ing support; and more.

1

2 CHAPTER 1. INTRODUCTION

• Yii is extremely extensible. You can customize or replace nearly every
piece of the core's code. You can also take advantage of Yii's solid
extension architecture to use or develop redistributable extensions.

• High performance is always a primary goal of Yii.

Yii is not a one-man show, it is backed up by a strong core developer team1,
as well as a large community of professionals constantly contributing to Yii's
development. The Yii developer team keeps a close eye on the latest Web
development trends and on the best practices and features found in other
frameworks and projects. The most relevant best practices and features
found elsewhere are regularly incorporated into the core framework and ex-
posed via simple and elegant interfaces.

1.1.3 Yii Versions

Yii currently has two major versions available: 1.1 and 2.0. Version 1.1 is
the old generation and is now in maintenance mode. Version 2.0 is a com-
plete rewrite of Yii, adopting the latest technologies and protocols, including
Composer, PSR, namespaces, traits, and so forth. Version 2.0 represents the
current generation of the framework and will receive the main development
e�orts over the next few years. This guide is mainly about version 2.0.

1.1.4 Requirements and Prerequisites

Yii 2.0 requires PHP 5.4.0 or above and runs best with the latest version of
PHP 7. You can �nd more detailed requirements for individual features by
running the requirement checker included in every Yii release.

Using Yii requires basic knowledge of object-oriented programming (OOP),
as Yii is a pure OOP-based framework. Yii 2.0 also makes use of the latest
features of PHP, such as namespaces2 and traits3. Understanding these con-
cepts will help you more easily pick up Yii 2.0.

1.2 Upgrading from Version 1.1

There are many di�erences between versions 1.1 and 2.0 of Yii as the frame-
work was completely rewritten for 2.0. As a result, upgrading from version
1.1 is not as trivial as upgrading between minor versions. In this guide you'll
�nd the major di�erences between the two versions.

If you have not used Yii 1.1 before, you can safely skip this section and
turn directly to �Getting started�.

Please note that Yii 2.0 introduces more new features than are covered
in this summary. It is highly recommended that you read through the whole

1http://www.yiiframework.com/team/
2http://www.php.net/manual/en/language.namespaces.php
3http://www.php.net/manual/en/language.oop5.traits.php

http://www.yiiframework.com/team/
http://www.php.net/manual/en/language.namespaces.php
http://www.php.net/manual/en/language.oop5.traits.php

1.2. UPGRADING FROM VERSION 1.1 3

de�nitive guide to learn about them all. Chances are that some features you
previously had to develop for yourself are now part of the core code.

1.2.1 Installation

Yii 2.0 fully embraces Composer4, the de facto PHP package manager. In-
stallation of the core framework, as well as extensions, are handled through
Composer. Please refer to the Installing Yii section to learn how to install
Yii 2.0. If you want to create new extensions, or turn your existing 1.1 exten-
sions into 2.0-compatible extensions, please refer to the Creating Extensions
section of the guide.

1.2.2 PHP Requirements

Yii 2.0 requires PHP 5.4 or above, which is a huge improvement over PHP
version 5.2 that is required by Yii 1.1. As a result, there are many di�erences
on the language level that you should pay attention to. Below is a summary
of the major changes regarding PHP:

• Namespaces5.
• Anonymous functions6.
• Short array syntax [...elements...] is used instead of array(...elements

...).
• Short echo tags <?= are used in view �les. This is safe to use starting
from PHP 5.4.

• SPL classes and interfaces7.
• Late Static Bindings8.
• Date and Time9.
• Traits10.
• intl11. Yii 2.0 makes use of the intl PHP extension to support inter-
nationalization features.

1.2.3 Namespace

The most obvious change in Yii 2.0 is the use of namespaces. Almost every
core class is namespaced, e.g., yii\web\Request. The �C� pre�x is no longer
used in class names. The naming scheme now follows the directory structure.
For example, yii\web\Request indicates that the corresponding class �le is web
/Request.php under the Yii framework folder.

4https://getcomposer.org/
5http://php.net/manual/en/language.namespaces.php
6http://php.net/manual/en/functions.anonymous.php
7http://php.net/manual/en/book.spl.php
8http://php.net/manual/en/language.oop5.late-static-bindings.php
9http://php.net/manual/en/book.datetime.php

10http://php.net/manual/en/language.oop5.traits.php
11http://php.net/manual/en/book.intl.php

https://getcomposer.org/
http://php.net/manual/en/language.namespaces.php
http://php.net/manual/en/functions.anonymous.php
http://php.net/manual/en/book.spl.php
http://php.net/manual/en/language.oop5.late-static-bindings.php
http://php.net/manual/en/book.datetime.php
http://php.net/manual/en/language.oop5.traits.php
http://php.net/manual/en/book.intl.php

4 CHAPTER 1. INTRODUCTION

(You can use any core class without explicitly including that class �le,
thanks to the Yii class loader.)

1.2.4 Component and Object

Yii 2.0 breaks the CComponent class in 1.1 into two classes: yii\base\Object
and yii\base\Component. The yii\base\Object class is a lightweight base
class that allows de�ning object properties via getters and setters. The yii
\base\Component class extends from yii\base\Object and supports events
and behaviors.

If your class does not need the event or behavior feature, you should
consider using yii\base\Object as the base class. This is usually the case
for classes that represent basic data structures.

1.2.5 Object Con�guration

The yii\base\Object class introduces a uniform way of con�guring objects.
Any descendant class of yii\base\Object should declare its constructor (if
needed) in the following way so that it can be properly con�gured:

class MyClass extends \yii\base\Object

{

public function __construct($param1, $param2, $config = [])

{

// ... initialization before configuration is applied

parent::__construct($config);

}

public function init()

{

parent::init();

// ... initialization after configuration is applied

}

}

In the above, the last parameter of the constructor must take a con�guration
array that contains name-value pairs for initializing the properties at the end
of the constructor. You can override the yii\base\Object::init() method
to do initialization work that should be done after the con�guration has been
applied.

By following this convention, you will be able to create and con�gure
new objects using a con�guration array:

$object = Yii::createObject([

'class' => 'MyClass',

'property1' => 'abc',

'property2' => 'cde',

], [$param1, $param2]);

1.2. UPGRADING FROM VERSION 1.1 5

More details about con�gurations can be found in the Con�gurations section.

1.2.6 Events

In Yii 1, events were created by de�ning an on-method (e.g., onBeforeSave).
In Yii 2, you can now use any event name. You trigger an event by calling
the yii\base\Component::trigger() method:

$event = new \yii\base\Event;

$component->trigger($eventName, $event);

To attach a handler to an event, use the yii\base\Component::on()method:

$component->on($eventName, $handler);

// To detach the handler, use:

// $component->off($eventName, $handler);

There are many enhancements to the event features. For more details, please
refer to the Events section.

1.2.7 Path Aliases

Yii 2.0 expands the usage of path aliases to both �le/directory paths and
URLs. Yii 2.0 also now requires an alias name to start with the @ character,
to di�erentiate aliases from normal �le/directory paths or URLs. For ex-
ample, the alias @yii refers to the Yii installation directory. Path aliases are
supported in most places in the Yii core code. For example, yii\caching
\FileCache::cachePath can take both a path alias and a normal directory
path.

A path alias is also closely related to a class namespace. It is recom-
mended that a path alias be de�ned for each root namespace, thereby al-
lowing you to use Yii class autoloader without any further con�guration.
For example, because @yii refers to the Yii installation directory, a class like
yii\web\Request can be autoloaded. If you use a third party library, such as
the Zend Framework, you may de�ne a path alias @Zend that refers to that
framework's installation directory. Once you've done that, Yii will be able
to autoload any class in that Zend Framework library, too.

More on path aliases can be found in the Aliases section.

1.2.8 Views

The most signi�cant change about views in Yii 2 is that the special variable
$this in a view no longer refers to the current controller or widget. Instead,
$this now refers to a view object, a new concept introduced in 2.0. The view
object is of type yii\web\View, which represents the view part of the MVC
pattern. If you want to access the controller or widget in a view, you can
use $this->context.

6 CHAPTER 1. INTRODUCTION

To render a partial view within another view, you use $this->render(),
not $this->renderPartial(). The call to render also now has to be explicitly
echoed, as the render() method returns the rendering result, rather than
directly displaying it. For example:

echo $this->render('_item', ['item' => $item]);

Besides using PHP as the primary template language, Yii 2.0 is also equipped
with o�cial support for two popular template engines: Smarty and Twig.
The Prado template engine is no longer supported. To use these template
engines, you need to con�gure the view application component by setting
the yii\base\View::$renderers property. Please refer to the Template
Engines section for more details.

1.2.9 Models

Yii 2.0 uses yii\base\Model as the base model, similar to CModel in 1.1.
The class CFormModel has been dropped entirely. Instead, in Yii 2 you should
extend yii\base\Model to create a form model class.

Yii 2.0 introduces a new method called yii\base\Model::scenarios()

to declare supported scenarios, and to indicate under which scenario an
attribute needs to be validated, can be considered as safe or not, etc. For
example:

public function scenarios()

{

return [

'backend' => ['email', 'role'],

'frontend' => ['email', '!role'],

];

}

In the above, two scenarios are declared: backend and frontend. For the
backend scenario, both the email and role attributes are safe, and can be
massively assigned. For the frontend scenario, email can be massively assigned
while role cannot. Both email and role should be validated using rules.

The yii\base\Model::rules() method is still used to declare the val-
idation rules. Note that due to the introduction of yii\base\Model::

scenarios(), there is no longer an unsafe validator.

In most cases, you do not need to override yii\base\Model::scenarios()
if the yii\base\Model::rules() method fully speci�es the scenarios that
will exist, and if there is no need to declare unsafe attributes.

To learn more details about models, please refer to the Models section.

1.2.10 Controllers

Yii 2.0 uses yii\web\Controller as the base controller class, which is similar
to CController in Yii 1.1. yii\base\Action is the base class for action classes.

1.2. UPGRADING FROM VERSION 1.1 7

The most obvious impact of these changes on your code is that a con-
troller action should return the content that you want to render instead of
echoing it:

public function actionView($id)

{

$model = \app\models\Post::findOne($id);

if ($model) {

return $this->render('view', ['model' => $model]);

} else {

throw new \yii\web\NotFoundHttpException;

}

}

Please refer to the Controllers section for more details about controllers.

1.2.11 Widgets

Yii 2.0 uses yii\base\Widget as the base widget class, similar to CWidget in
Yii 1.1.

To get better support for the framework in IDEs, Yii 2.0 introduces a new
syntax for using widgets. The static methods yii\base\Widget::begin(),
yii\base\Widget::end(), and yii\base\Widget::widget() have been in-
troduced, to be used like so:

use yii\widgets\Menu;

use yii\widgets\ActiveForm;

// Note that you have to "echo" the result to display it

echo Menu::widget(['items' => $items]);

// Passing an array to initialize the object properties

$form = ActiveForm::begin([

'options' => ['class' => 'form-horizontal'],

'fieldConfig' => ['inputOptions' => ['class' => 'input-xlarge']],

]);

... form input fields here ...

ActiveForm::end();

Please refer to the Widgets section for more details.

1.2.12 Themes

Themes work completely di�erently in 2.0. They are now based on a path
mapping mechanism that maps a source view �le path to a themed view
�le path. For example, if the path map for a theme is ['/web/views' => '/

web/themes/basic'], then the themed version for the view �le /web/views/site

/index.php will be /web/themes/basic/site/index.php. For this reason, themes
can now be applied to any view �le, even a view rendered outside of the
context of a controller or a widget.

8 CHAPTER 1. INTRODUCTION

Also, there is no more CThemeManager component. Instead, theme is a con-
�gurable property of the view application component.

Please refer to the Theming section for more details.

1.2.13 Console Applications

Console applications are now organized as controllers, like Web applications.
Console controllers should extend from yii\console\Controller, similar
to CConsoleCommand in 1.1.

To run a console command, use yii <route>, where <route> stands for a
controller route (e.g. sitemap/index). Additional anonymous arguments are
passed as the parameters to the corresponding controller action method,
while named arguments are parsed according to the declarations in yii

\console\Controller::options().
Yii 2.0 supports automatic generation of command help information from

comment blocks.
Please refer to the Console Commands section for more details.

1.2.14 I18N

Yii 2.0 removes the built-in date formatter and number formatter pieces in
favor of the PECL intl PHP module12.

Message translation is now performed via the i18n application compon-
ent. This component manages a set of message sources, which allows you to
use di�erent message sources based on message categories.

Please refer to the Internationalization section for more details.

1.2.15 Action Filters

Action �lters are implemented via behaviors now. To de�ne a new, custom
�lter, extend from yii\base\ActionFilter. To use a �lter, attach the �lter
class to the controller as a behavior. For example, to use the yii\filters

\AccessControl �lter, you would have the following code in a controller:

public function behaviors()

{

return [

'access' => [

'class' => 'yii\filters\AccessControl',

'rules' => [

['allow' => true, 'actions' => ['admin'], 'roles' => ['@']],

],

],

];

}

Please refer to the Filtering section for more details.

12http://pecl.php.net/package/intl

http://pecl.php.net/package/intl

1.2. UPGRADING FROM VERSION 1.1 9

1.2.16 Assets

Yii 2.0 introduces a new concept called asset bundle that replaces the script
package concept found in Yii 1.1.

An asset bundle is a collection of asset �les (e.g. JavaScript �les, CSS
�les, image �les, etc.) within a directory. Each asset bundle is represented
as a class extending yii\web\AssetBundle. By registering an asset bundle
via yii\web\AssetBundle::register(), you make the assets in that bundle
accessible via the Web. Unlike in Yii 1, the page registering the bundle will
automatically contain the references to the JavaScript and CSS �les speci�ed
in that bundle.

Please refer to the Managing Assets section for more details.

1.2.17 Helpers

Yii 2.0 introduces many commonly used static helper classes, including.

• yii\helpers\Html

• yii\helpers\ArrayHelper

• yii\helpers\StringHelper

• yii\helpers\FileHelper

• yii\helpers\Json

Please refer to the Helper Overview section for more details.

1.2.18 Forms

Yii 2.0 introduces the �eld concept for building a form using yii\widgets

\ActiveForm. A �eld is a container consisting of a label, an input, an er-
ror message, and/or a hint text. A �eld is represented as an yii\widgets

\ActiveField object. Using �elds, you can build a form more cleanly than
before:

<?php $form = yii\widgets\ActiveForm::begin(); ?>

<?= $form->field($model, 'username') ?>

<?= $form->field($model, 'password')->passwordInput() ?>

<div class="form-group">

<?= Html::submitButton('Login') ?>

</div>

<?php yii\widgets\ActiveForm::end(); ?>

Please refer to the Creating Forms section for more details.

1.2.19 Query Builder

In 1.1, query building was scattered among several classes, including CDbCommand

, CDbCriteria, and CDbCommandBuilder. Yii 2.0 represents a DB query in terms
of a yii\db\Query object that can be turned into a SQL statement with the
help of yii\db\QueryBuilder behind the scene. For example:

10 CHAPTER 1. INTRODUCTION

$query = new \yii\db\Query();

$query->select('id, name')

->from('user')

->limit(10);

$command = $query->createCommand();

$sql = $command->sql;

$rows = $command->queryAll();

Best of all, such query building methods can also be used when working with
Active Record.

Please refer to the Query Builder section for more details.

1.2.20 Active Record

Yii 2.0 introduces a lot of changes to Active Record. The two most obvious
ones involve query building and relational query handling.

The CDbCriteria class in 1.1 is replaced by yii\db\ActiveQuery in Yii 2.
That class extends from yii\db\Query, and thus inherits all query building
methods. You call yii\db\ActiveRecord::find() to start building a query:

// To retrieve all *active* customers and order them by their ID:

$customers = Customer::find()

->where(['status' => $active])

->orderBy('id')

->all();

To declare a relation, simply de�ne a getter method that returns an yii\db

\ActiveQuery object. The property name de�ned by the getter represents
the relation name. For example, the following code declares an orders relation
(in 1.1, you would have to declare relations in a central place relations()):

class Customer extends \yii\db\ActiveRecord

{

public function getOrders()

{

return $this->hasMany('Order', ['customer_id' => 'id']);

}

}

Now you can use $customer->orders to access a customer's orders from the
related table. You can also use the following code to perform an on-the-�y
relational query with a customized query condition:

$orders = $customer->getOrders()->andWhere('status=1')->all();

When eager loading a relation, Yii 2.0 does it di�erently from 1.1. In partic-
ular, in 1.1 a JOIN query would be created to select both the primary and
the relational records. In Yii 2.0, two SQL statements are executed without
using JOIN: the �rst statement brings back the primary records and the
second brings back the relational records by �ltering with the primary keys
of the primary records.

1.2. UPGRADING FROM VERSION 1.1 11

Instead of returning yii\db\ActiveRecord objects, you may chain the
yii\db\ActiveQuery::asArray() method when building a query to return
a large number of records. This will cause the query result to be returned
as arrays, which can signi�cantly reduce the needed CPU time and memory
if large number of records . For example:

$customers = Customer::find()->asArray()->all();

Another change is that you can't de�ne attribute default values through
public properties anymore. If you need those, you should set them in the
init method of your record class.

public function init()

{

parent::init();

$this->status = self::STATUS_NEW;

}

There were some problems with overriding the constructor of an ActiveRecord
class in 1.1. These are not present in version 2.0 anymore. Note that when
adding parameters to the constructor you might have to override yii\db

\ActiveRecord::instantiate().
There are many other changes and enhancements to Active Record.

Please refer to the Active Record section for more details.

1.2.21 Active Record Behaviors

In 2.0, we have dropped the base behavior class CActiveRecordBehavior. If you
want to create an Active Record Behavior, you will have to extend directly
from yii\base\Behavior. If the behavior class needs to respond to some events
of the owner, you have to override the events() method like the following:

namespace app\components;

use yii\db\ActiveRecord;

use yii\base\Behavior;

class MyBehavior extends Behavior

{

// ...

public function events()

{

return [

ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',

];

}

public function beforeValidate($event)

{

// ...

}

12 CHAPTER 1. INTRODUCTION

}

1.2.22 User and IdentityInterface

The CWebUser class in 1.1 is now replaced by yii\web\User, and there is
no more CUserIdentity class. Instead, you should implement the yii\web

\IdentityInterface which is much more straightforward to use. The ad-
vanced project template provides such an example.

Please refer to the Authentication, Authorization, and Advanced Project
Template13 sections for more details.

1.2.23 URL Management

URL management in Yii 2 is similar to that in 1.1. A major enhancement
is that URL management now supports optional parameters. For example,
if you have a rule declared as follows, then it will match both post/popular

and post/1/popular. In 1.1, you would have had to use two rules to achieve
the same goal.

[

'pattern' => 'post/<page:\d+>/<tag>',

'route' => 'post/index',

'defaults' => ['page' => 1],

]

Please refer to the Url manager docs section for more details.
An important change in the naming convention for routes is that camel

case names of controllers and actions are now converted to lower case where
each word is separated by a hypen, e.g. the controller id for the CamelCaseController
will be camel-case. See the section about controller IDs and action IDs for
more details.

1.2.24 Using Yii 1.1 and 2.x together

If you have legacy Yii 1.1 code that you want to use together with Yii 2.0,
please refer to the Using Yii 1.1 and 2.0 Together section.

13https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/

README.md

https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md

Chapter 2

Getting Started

2.1 Installing Yii

You can install Yii in two ways, using the Composer1 package manager or by
downloading an archive �le. The former is the preferred way, as it allows you
to install new extensions or update Yii by simply running a single command.

Standard installations of Yii result in both the framework and a project
template being downloaded and installed. A project template is a working
Yii project implementing some basic features, such as login, contact form,
etc. Its code is organized in a recommended way. Therefore, it can serve as
a good starting point for your projects.

In this and the next few sections, we will describe how to install Yii with
the so-called Basic Project Template and how to implement new features on
top of this template. Yii also provides another template called the Advanced
Project Template2 which is better used in a team development environment
to develop applications with multiple tiers.

Info: The Basic Project Template is suitable for developing 90
percent of Web applications. It di�ers from the Advanced Project
Template mainly in how their code is organized. If you are new
to Yii, we strongly recommend you stick to the Basic Project
Template for its simplicity yet su�cient functionalities.

2.1.1 Installing via Composer

Installing Composer

If you do not already have Composer installed, you may do so by following
the instructions at getcomposer.org3. On Linux and Mac OS X, you'll run

1https://getcomposer.org/
2https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/

README.md
3https://getcomposer.org/download/

13

https://getcomposer.org/
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://getcomposer.org/download/

14 CHAPTER 2. GETTING STARTED

the following commands:

curl -sS https://getcomposer.org/installer | php

mv composer.phar /usr/local/bin/composer

On Windows, you'll download and run Composer-Setup.exe4.
Please refer to the Troubleshooting section of the Composer Document-

ation5 if you encounter any problems. If you are new to Composer, we
also recommend to read at least the Basic usage section6 of the Composer
documentation.

In this guide all composer commands assume you have installed composer
globally7 so that it is available as the composer command. If you are using the
composer.phar in the local directory instead, you have to adjust the example
commands accordingly.

If you had Composer already installed before, make sure you use an up
to date version. You can update Composer by running composer self-update.

Note: During the installation of Yii, Composer will need to re-
quest a lot of information from the Github API. The number of
requests depends on the number of dependencies your applica-
tion has and may be bigger than the Github API rate limit.
If you hit this limit, Composer may ask for your Github login
credentials to obtain a Github API access token. On fast con-
nections you may hit this limit earlier than Composer can handle
so we recommend to con�gure the access token before installing
Yii. Please refer to the Composer documentation about Github
API tokens8 for instructions on how to do this.

Installing Yii

With Composer installed, you can install Yii by running the following com-
mands under a Web-accessible folder:

composer global require "fxp/composer-asset-plugin:^1.2.0"

composer create-project --prefer-dist yiisoft/yii2-app-basic basic

The �rst command installs the composer asset plugin9 which allows man-
aging bower and npm package dependencies through Composer. You only
need to run this command once for all. The second command installs the
latest stable version of Yii in a directory named basic. You can choose a
di�erent directory name if you want.

4https://getcomposer.org/Composer-Setup.exe
5https://getcomposer.org/doc/articles/troubleshooting.md
6https://getcomposer.org/doc/01-basic-usage.md
7https://getcomposer.org/doc/00-intro.md#globally
8https://getcomposer.org/doc/articles/troubleshooting.md#

api-rate-limit-and-oauth-tokens
9https://github.com/francoispluchino/composer-asset-plugin/

https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/doc/articles/troubleshooting.md
https://getcomposer.org/doc/01-basic-usage.md
https://getcomposer.org/doc/00-intro.md#globally
https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens
https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens
https://github.com/francoispluchino/composer-asset-plugin/

2.1. INSTALLING YII 15

Info: If the composer create-project command fails make sure
you have the composer asset plugin installed correctly. You can
do that by running composer global show, which should contain
an entry fxp/composer-asset-plugin. You may also refer to the
Troubleshooting section of the Composer Documentation10 for
common errors. When you have �xed the error, you can resume
the aborted installation by running composer update inside of the
basic directory.

Tip: If you want to install the latest development version of
Yii, you may use the following command instead, which adds a
stability option11:

composer create-project --prefer-dist --stability=dev yiisoft/

yii2-app-basic basic

Note that the development version of Yii should not be used for
production as it may break your running code.

2.1.2 Installing from an Archive File

Installing Yii from an archive �le involves three steps:

1. Download the archive �le from yiiframework.com12.

2. Unpack the downloaded �le to a Web-accessible folder.

3. Modify the config/web.php �le by entering a secret key for the cookieValidationKey
con�guration item (this is done automatically if you are installing Yii
using Composer):

// !!! insert a secret key in the following (if it is empty) - this is

required by cookie validation

'cookieValidationKey' => 'enter your secret key here',

2.1.3 Other Installation Options

The above installation instructions show how to install Yii, which also creates
a basic Web application that works out of the box. This approach is a good
starting point for most projects, either small or big. It is especially suitable
if you just start learning Yii.

But there are other installation options available:
• If you only want to install the core framework and would like to build
an entire application from scratch, you may follow the instructions as
explained in Building Application from Scratch.

10https://getcomposer.org/doc/articles/troubleshooting.md
11https://getcomposer.org/doc/04-schema.md#minimum-stability
12http://www.yiiframework.com/download/

https://getcomposer.org/doc/articles/troubleshooting.md
https://getcomposer.org/doc/04-schema.md#minimum-stability
http://www.yiiframework.com/download/

16 CHAPTER 2. GETTING STARTED

• If you want to start with a more sophisticated application, better suited
to team development environments, you may consider installing the
Advanced Project Template13.

2.1.4 Verifying the Installation

After installation is done, either con�gure your web server (see next sec-
tion) or use the built-in PHP web server14 by running the following console
command while in the project web directory:

php yii serve

Note: By default the HTTP-server will listen to port 8080. How-
ever if that port is already in use or you wish to serve multiple
applications this way, you might want to specify what port to
use. Just add the �port argument:

php yii serve --port=8888

You can use your browser to access the installed Yii application with the
following URL:

http://localhost:8080/

You should see the above �Congratulations!� page in your browser. If
not, please check if your PHP installation satis�es Yii's requirements. You

13https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/

README.md
14https://secure.php.net/manual/en/features.commandline.webserver.php

https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://secure.php.net/manual/en/features.commandline.webserver.php

2.1. INSTALLING YII 17

can check if the minimum requirements are met using one of the following
approaches:

• Copy /requirements.php to /web/requirements.php and then use a browser
to access it via http://localhost/requirements.php

• Run the following commands:

cd basic

php requirements.php

You should con�gure your PHP installation so that it meets the minimum
requirements of Yii. Most importantly, you should have PHP 5.4 or above.
Ideally latest PHP 7. You should also install the PDO PHP Extension15 and
a corresponding database driver (such as pdo_mysql for MySQL databases),
if your application needs a database.

2.1.5 Con�guring Web Servers

Info: You may skip this subsection for now if you are just test
driving Yii with no intention of deploying it to a production
server.

The application installed according to the above instructions should work out
of box with either an Apache HTTP server16 or an Nginx HTTP server17,
on Windows, Mac OS X, or Linux running PHP 5.4 or higher. Yii 2.0 is also
compatible with facebook's HHVM18. However, there are some edge cases
where HHVM behaves di�erent than native PHP, so you have to take some
extra care when using HHVM.

On a production server, you may want to con�gure your Web server
so that the application can be accessed via the URL http://www.example.com

/index.php instead of http://www.example.com/basic/web/index.php. Such con-
�guration requires pointing the document root of your Web server to the
basic/web folder. You may also want to hide index.php from the URL, as de-
scribed in the Routing and URL Creation section. In this subsection, you'll
learn how to con�gure your Apache or Nginx server to achieve these goals.

Info: By setting basic/web as the document root, you also pre-
vent end users from accessing your private application code and
sensitive data �les that are stored in the sibling directories of
basic/web. Denying access to those other folders is a security
improvement.

Info: If your application will run in a shared hosting envir-
onment where you do not have permission to modify its Web

15http://www.php.net/manual/en/pdo.installation.php
16http://httpd.apache.org/
17http://nginx.org/
18http://hhvm.com/

http://www.php.net/manual/en/pdo.installation.php
http://httpd.apache.org/
http://nginx.org/
http://hhvm.com/

18 CHAPTER 2. GETTING STARTED

server con�guration, you may still adjust the structure of your
application for better security. Please refer to the Shared Hosting
Environment section for more details.

Recommended Apache Con�guration

Use the following con�guration in Apache's httpd.conf �le or within a virtual
host con�guration. Note that you should replace path/to/basic/web with the
actual path for basic/web.

Set document root to be "basic/web"

DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">

use mod_rewrite for pretty URL support

RewriteEngine on

If a directory or a file exists, use the request directly

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

Otherwise forward the request to index.php

RewriteRule . index.php

...other settings...

</Directory>

Recommended Nginx Con�guration

To use Nginx19, you should install PHP as an FPM SAPI20. You may use
the following Nginx con�guration, replacing path/to/basic/web with the actual
path for basic/web and mysite.local with the actual hostname to serve.

server {

charset utf-8;

client_max_body_size 128M;

listen 80; ## listen for ipv4

#listen [::]:80 default_server ipv6only=on; ## listen for ipv6

server_name mysite.local;

root /path/to/basic/web;

index index.php;

access_log /path/to/basic/log/access.log;

error_log /path/to/basic/log/error.log;

location / {

Redirect everything that isn't a real file to index.php

try_files $uri $uri/ /index.php$is_args$args;

}

19http://wiki.nginx.org/
20http://php.net/install.fpm

http://wiki.nginx.org/
http://php.net/install.fpm

2.2. RUNNING APPLICATIONS 19

uncomment to avoid processing of calls to non-existing static files by

Yii

#location ~ \.(js|css|png|jpg|gif|swf|ico|pdf|mov|fla|zip|rar)$ {

try_files $uri =404;

#}

#error_page 404 /404.html;

deny accessing php files for the /assets directory

location ~ ^/assets/.*\.php$ {

deny all;

}

location ~ \.php$ {

include fastcgi_params;

fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

fastcgi_pass 127.0.0.1:9000;

#fastcgi_pass unix:/var/run/php5-fpm.sock;

try_files $uri =404;

}

location ~* /\. {

deny all;

}

}

When using this con�guration, you should also set cgi.fix_pathinfo=0 in the
php.ini �le in order to avoid many unnecessary system stat() calls.

Also note that when running an HTTPS server, you need to add fastcgi_param

HTTPS on; so that Yii can properly detect if a connection is secure.

2.2 Running Applications

After installing Yii, you have a working Yii application that can be ac-
cessed via the URL http://hostname/basic/web/index.php or http://hostname/

index.php, depending upon your con�guration. This section will introduce
the application's built-in functionality, how the code is organized, and how
the application handles requests in general.

Info: For simplicity, throughout this �Getting Started� tutorial,
it's assumed that you have set basic/web as the document root
of your Web server, and con�gured the URL for accessing your
application to be http://hostname/index.php or something similar.
For your needs, please adjust the URLs in our descriptions ac-
cordingly.

Note that unlike framework itself, after project template is installed it's all
yours. You're free to add or delete code and overall modify it as you need.

20 CHAPTER 2. GETTING STARTED

2.2.1 Functionality

The basic application installed contains four pages:
• the homepage, displayed when you access the URL http://hostname/

index.php,
• the �About� page,
• the �Contact� page, which displays a contact form that allows end users
to contact you via email,

• and the �Login� page, which displays a login form that can be used to
authenticate end users. Try logging in with �admin/admin�, and you
will �nd the �Login� main menu item will change to �Logout�.

These pages share a common header and footer. The header contains a main
menu bar to allow navigation among di�erent pages.

You should also see a toolbar at the bottom of the browser window.
This is a useful debugger tool21 provided by Yii to record and display a
lot of debugging information, such as log messages, response statuses, the
database queries run, and so on.

Additionally to the web application, there is a console script called yii,
which is located in the applications base directory. This script can be used
to run background and maintenance tasks for the application, which are
described in the Console Application Section.

2.2.2 Application Structure

The most important directories and �les in your application are (assuming
the application's root directory is basic):

basic/ application base path

composer.json used by Composer, describes package information

config/ contains application and other configurations

console.php the console application configuration

web.php the Web application configuration

commands/ contains console command classes

controllers/ contains controller classes

models/ contains model classes

runtime/ contains files generated by Yii during runtime, such

as logs and cache files

vendor/ contains the installed Composer packages, including

the Yii framework itself

views/ contains view files

web/ application Web root, contains Web accessible files

assets/ contains published asset files (javascript and css)

by Yii

index.php the entry (or bootstrap) script for the application

yii the Yii console command execution script

In general, the �les in the application can be divided into two types: those
under basic/web and those under other directories. The former can be directly

21https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md

https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md

2.2. RUNNING APPLICATIONS 21

accessed via HTTP (i.e., in a browser), while the latter can not and should
not be.

Yii implements the model-view-controller (MVC)22 architectural pattern,
which is re�ected in the above directory organization. The models directory
contains all model classes, the views directory contains all view scripts, and
the controllers directory contains all controller classes.

The following diagram shows the static structure of an application.

Each application has an entry script web/index.php which is the only Web
accessible PHP script in the application. The entry script takes an incoming
request and creates an application instance to handle it. The application
resolves the request with the help of its components, and dispatches the
request to the MVC elements. Widgets are used in the views to help build
complex and dynamic user interface elements.

2.2.3 Request Lifecycle

The following diagram shows how an application handles a request.

22http://wikipedia.org/wiki/Model-view-controller

http://wikipedia.org/wiki/Model-view-controller

22 CHAPTER 2. GETTING STARTED

1. A user makes a request to the entry script web/index.php.

2. The entry script loads the application con�guration and creates an
application instance to handle the request.

3. The application resolves the requested route with the help of the re-
quest application component.

4. The application creates a controller instance to handle the request.

5. The controller creates an action instance and performs the �lters for
the action.

6. If any �lter fails, the action is cancelled.

7. If all �lters pass, the action is executed.

8. The action loads a data model, possibly from a database.

9. The action renders a view, providing it with the data model.

10. The rendered result is returned to the response application component.

11. The response component sends the rendered result to the user's browser.

2.3. SAYING HELLO 23

2.3 Saying Hello

This section describes how to create a new �Hello� page in your application.
To achieve this goal, you will create an action and a view:

• The application will dispatch the page request to the action
• and the action will in turn render the view that shows the word �Hello�
to the end user.

Through this tutorial, you will learn three things:

1. how to create an action to respond to requests,

2. how to create a view to compose the response's content, and

3. how an application dispatches requests to actions.

2.3.1 Creating an Action

For the �Hello� task, you will create a say action that reads a message para-
meter from the request and displays that message back to the user. If the
request does not provide a message parameter, the action will display the
default �Hello� message.

Info: Actions are the objects that end users can directly refer to
for execution. Actions are grouped by controllers. The execution
result of an action is the response that an end user will receive.

Actions must be declared in controllers. For simplicity, you may declare the
say action in the existing SiteController. This controller is de�ned in the
class �le controllers/SiteController.php. Here is the start of the new action:

<?php

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller

{

// ...existing code...

public function actionSay($message = 'Hello')

{

return $this->render('say', ['message' => $message]);

}

}

In the above code, the say action is de�ned as a method named actionSay

in the SiteController class. Yii uses the pre�x action to di�erentiate action
methods from non-action methods in a controller class. The name after the
action pre�x maps to the action's ID.

24 CHAPTER 2. GETTING STARTED

When it comes to naming your actions, you should understand how Yii
treats action IDs. Action IDs are always referenced in lower case. If an action
ID requires multiple words, they will be concatenated by dashes (e.g., create
-comment). Action method names are mapped to action IDs by removing any
dashes from the IDs, capitalizing the �rst letter in each word, and pre�xing
the resulting string with action. For example, the action ID create-comment

corresponds to the action method name actionCreateComment.
The action method in our example takes a parameter $message, whose

value defaults to "Hello" (in exactly the same way you set a default value for
any function or method argument in PHP). When the application receives a
request and determines that the say action is responsible for handling said
request, the application will populate this parameter with the same named
parameter found in the request. In other words, if the request includes a
message parameter with a value of "Goodbye", the $message variable within the
action will be assigned that value.

Within the action method, yii\web\Controller::render() is called to
render a view �le named say. The message parameter is also passed to the
view so that it can be used there. The rendering result is returned by the
action method. That result will be received by the application and displayed
to the end user in the browser (as part of a complete HTML page).

2.3.2 Creating a View

Views are scripts you write to generate a response's content. For the �Hello�
task, you will create a say view that prints the message parameter received
from the action method:

<?php

use yii\helpers\Html;

?>

<?= Html::encode($message) ?>

The say view should be saved in the �le views/site/say.php. When the method
yii\web\Controller::render() is called in an action, it will look for a PHP
�le named as views/ControllerID/ViewName.php.

Note that in the above code, the message parameter is yii\helpers\Html
::encode() before being printed. This is necessary as the parameter comes
from an end user, making it vulnerable to cross-site scripting (XSS) attacks23

by embedding malicious JavaScript code in the parameter.
Naturally, you may put more content in the say view. The content can

consist of HTML tags, plain text, and even PHP statements. In fact, the say

view is just a PHP script that is executed by the yii\web\Controller::

render() method. The content printed by the view script will be returned to
the application as the response's result. The application will in turn output
this result to the end user.

23http://en.wikipedia.org/wiki/Cross-site_scripting

http://en.wikipedia.org/wiki/Cross-site_scripting

2.3. SAYING HELLO 25

2.3.3 Trying it Out

After creating the action and the view, you may access the new page by
accessing the following URL:

http://hostname/index.php?r=site%2Fsay&message=Hello+World

This URL will result in a page displaying �Hello World�. The page shares
the same header and footer as the other application pages.

If you omit the message parameter in the URL, you would see the page
display just �Hello�. This is because message is passed as a parameter to the
actionSay() method, and when it is omitted, the default value of "Hello" will
be used instead.

Info: The new page shares the same header and footer as other
pages because the yii\web\Controller::render() method will
automatically embed the result of the say view in a so-called
layout which in this case is located at views/layouts/main.php.

The r parameter in the above URL requires more explanation. It stands for
route, an application wide unique ID that refers to an action. The route's
format is ControllerID/ActionID. When the application receives a request, it
will check this parameter, using the ControllerID part to determine which
controller class should be instantiated to handle the request. Then, the
controller will use the ActionID part to determine which action should be
instantiated to do the real work. In this example case, the route site/say

will be resolved to the SiteController controller class and the say action. As
a result, the SiteController::actionSay() method will be called to handle the
request.

26 CHAPTER 2. GETTING STARTED

Info: Like actions, controllers also have IDs that uniquely identify
them in an application. Controller IDs use the same naming rules
as action IDs. Controller class names are derived from controller
IDs by removing dashes from the IDs, capitalizing the �rst letter
in each word, and su�xing the resulting string with the word
Controller. For example, the controller ID post-comment corres-
ponds to the controller class name PostCommentController.

2.3.4 Summary

In this section, you have touched the controller and view parts of the MVC
architectural pattern. You created an action as part of a controller to handle
a speci�c request. And you also created a view to compose the response's
content. In this simple example, no model was involved as the only data
used was the message parameter.

You have also learned about routes in Yii, which act as the bridge between
user requests and controller actions.

In the next section, you will learn how to create a model, and add a new
page containing an HTML form.

2.4 Working with Forms

This section describes how to create a new page with a form for getting data
from users. The page will display a form with a name input �eld and an
email input �eld. After getting those two pieces of information from the
user, the page will echo the entered values back for con�rmation.

To achieve this goal, besides creating an action and two views, you will
also create a model.

Through this tutorial, you will learn how to:
• create a model to represent the data entered by a user through a form,
• declare rules to validate the data entered,
• build an HTML form in a view.

2.4.1 Creating a Model

The data to be requested from the user will be represented by an EntryForm

model class as shown below and saved in the �le models/EntryForm.php. Please
refer to the Class Autoloading section for more details about the class �le
naming convention.

<?php

namespace app\models;

use Yii;

use yii\base\Model;

2.4. WORKING WITH FORMS 27

class EntryForm extends Model

{

public $name;

public $email;

public function rules()

{

return [

[['name', 'email'], 'required'],

['email', 'email'],

];

}

}

The class extends from yii\base\Model, a base class provided by Yii, com-
monly used to represent form data.

Info: yii\base\Model is used as a parent for model classes not
associated with database tables. yii\db\ActiveRecord is nor-
mally the parent for model classes that do correspond to database
tables.

The EntryForm class contains two public members, name and email, which are
used to store the data entered by the user. It also contains a method named
rules(), which returns a set of rules for validating the data. The validation
rules declared above state that

• both the name and email values are required
• the email data must be a syntactically valid email address

If you have an EntryForm object populated with the data entered by a user,
you may call its yii\base\Model::validate() to trigger the data validation
routines. A data validation failure will set the yii\base\Model::hasErrors
property to true, and you may learn what validation errors occurred through
yii\base\Model::getErrors.

<?php

$model = new EntryForm();

$model->name = 'Qiang';

$model->email = 'bad';

if ($model->validate()) {

// Good!

} else {

// Failure!

// Use $model->getErrors()

}

2.4.2 Creating an Action

Next, you'll need to create an entry action in the site controller that will use
the new model. The process of creating and using actions was explained in
the Saying Hello section.

28 CHAPTER 2. GETTING STARTED

<?php

namespace app\controllers;

use Yii;

use yii\web\Controller;

use app\models\EntryForm;

class SiteController extends Controller

{

// ...existing code...

public function actionEntry()

{

$model = new EntryForm();

if ($model->load(Yii::$app->request->post()) && $model->validate())

{

// valid data received in $model

// do something meaningful here about $model ...

return $this->render('entry-confirm', ['model' => $model]);

} else {

// either the page is initially displayed or there is some

validation error

return $this->render('entry', ['model' => $model]);

}

}

}

The action �rst creates an EntryForm object. It then tries to populate the
model with the data from $_POST, provided in Yii by yii\web\Request::

post(). If the model is successfully populated (i.e., if the user has submitted
the HTML form), the action will call yii\base\Model::validate() to make
sure the values entered are valid.

Info: The expression Yii::$app represents the application in-
stance, which is a globally accessible singleton. It is also a ser-
vice locator that provides components such as request, response,
db, etc. to support speci�c functionality. In the above code, the
request component of the application instance is used to access
the $_POST data.

If everything is �ne, the action will render a view named entry-confirm to
con�rm the successful submission of the data to the user. If no data is sub-
mitted or the data contains errors, the entry view will be rendered, wherein
the HTML form will be shown, along with any validation error messages.

Note: In this very simple example we just render the con-
�rmation page upon valid data submission. In practice, you

2.4. WORKING WITH FORMS 29

should consider using yii\web\Controller::refresh() or yii
\web\Controller::redirect() to avoid form resubmission prob-
lems24.

2.4.3 Creating Views

Finally, create two view �les named entry-confirm and entry. These will be
rendered by the entry action, as just described.

The entry-confirm view simply displays the name and email data. It
should be stored in the �le views/site/entry-confirm.php.

<?php

use yii\helpers\Html;

?>

<p>You have entered the following information:</p>

<label>Name</label>: <?= Html::encode($model->name) ?>

<label>Email</label>: <?= Html::encode($model->email) ?>

The entry view displays an HTML form. It should be stored in the �le
views/site/entry.php.

<?php

use yii\helpers\Html;

use yii\widgets\ActiveForm;

?>

<?php $form = ActiveForm::begin(); ?>

<?= $form->field($model, 'name') ?>

<?= $form->field($model, 'email') ?>

<div class="form-group">

<?= Html::submitButton('Submit', ['class' => 'btn btn-primary']) ?>

</div>

<?php ActiveForm::end(); ?>

The view uses a powerful widget called yii\widgets\ActiveForm to build
the HTML form. The begin() and end() methods of the widget render the
opening and closing form tags, respectively. Between the two method calls,
input �elds are created by the yii\widgets\ActiveForm::field() method.
The �rst input �eld is for the �name� data, and the second for the �email�
data. After the input �elds, the yii\helpers\Html::submitButton()method
is called to generate a submit button.

24http://en.wikipedia.org/wiki/Post/Redirect/Get

http://en.wikipedia.org/wiki/Post/Redirect/Get

30 CHAPTER 2. GETTING STARTED

2.4.4 Trying it Out

To see how it works, use your browser to access the following URL:

http://hostname/index.php?r=site%2Fentry

You will see a page displaying a form with two input �elds. In front of
each input �eld, a label indicates what data is to be entered. If you click
the submit button without entering anything, or if you do not provide a
valid email address, you will see an error message displayed next to each
problematic input �eld.

After entering a valid name and email address and clicking the submit
button, you will see a new page displaying the data that you just entered.

2.4. WORKING WITH FORMS 31

Magic Explained

You may wonder how the HTML form works behind the scene, because it
seems almost magical that it can display a label for each input �eld and show
error messages if you do not enter the data correctly without reloading the
page.

Yes, the data validation is initially done on the client-side using JavaS-
cript, and secondarily performed on the server-side via PHP. yii\widgets
\ActiveForm is smart enough to extract the validation rules that you have
declared in EntryForm, turn them into executable JavaScript code, and use the
JavaScript to perform data validation. In case you have disabled JavaScript
on your browser, the validation will still be performed on the server-side, as
shown in the actionEntry() method. This ensures data validity in all circum-
stances.

Warning: Client-side validation is a convenience that provides
for a better user experience. Server-side validation is always re-
quired, whether or not client-side validation is in place.

The labels for input �elds are generated by the field() method, using the
property names from the model. For example, the label Name will be generated
for the name property.

You may customize a label within a view using the following code:

<?= $form->field($model, 'name')->label('Your Name') ?>

<?= $form->field($model, 'email')->label('Your Email') ?>

32 CHAPTER 2. GETTING STARTED

Info: Yii provides many such widgets to help you quickly build
complex and dynamic views. As you will learn later, writing
a new widget is also extremely easy. You may want to turn
much of your view code into reusable widgets to simplify view
development in future.

2.4.5 Summary

In this section of the guide, you have touched every part in the MVC archi-
tectural pattern. You have learned how to create a model class to represent
the user data and validate said data.

You have also learned how to get data from users and how to display
data back in the browser. This is a task that could take you a lot of time
when developing an application, but Yii provides powerful widgets to make
this task very easy.

In the next section, you will learn how to work with databases, which
are needed in nearly every application.

2.5 Working with Databases

This section will describe how to create a new page that displays country
data fetched from a database table named country. To achieve this goal, you
will con�gure a database connection, create an Active Record class, de�ne
an action, and create a view.

Through this tutorial, you will learn how to:

• con�gure a DB connection,
• de�ne an Active Record class,
• query data using the Active Record class,
• display data in a view in a paginated fashion.

Note that in order to �nish this section, you should have basic knowledge and
experience using databases. In particular, you should know how to create a
database, and how to execute SQL statements using a DB client tool.

2.5.1 Preparing the Database

To begin, create a database named yii2basic, from which you will fetch
data in your application. You may create an SQLite, MySQL, PostgreSQL,
MSSQL or Oracle database, as Yii has built-in support for many database
applications. For simplicity, MySQL will be assumed in the following de-
scription.

Next, create a table named country in the database, and insert some
sample data. You may run the following SQL statements to do so:

CREATE TABLE `country` (

`code` CHAR(2) NOT NULL PRIMARY KEY,

2.5. WORKING WITH DATABASES 33

`name` CHAR(52) NOT NULL,

`population` INT(11) NOT NULL DEFAULT '0'

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `country` VALUES ('AU','Australia',24016400);

INSERT INTO `country` VALUES ('BR','Brazil',205722000);

INSERT INTO `country` VALUES ('CA','Canada',35985751);

INSERT INTO `country` VALUES ('CN','China',1375210000);

INSERT INTO `country` VALUES ('DE','Germany',81459000);

INSERT INTO `country` VALUES ('FR','France',64513242);

INSERT INTO `country` VALUES ('GB','United Kingdom',65097000);

INSERT INTO `country` VALUES ('IN','India',1285400000);

INSERT INTO `country` VALUES ('RU','Russia',146519759);

INSERT INTO `country` VALUES ('US','United States',322976000);

At this point, you have a database named yii2basic, and within it a country

table with three columns, containing ten rows of data.

2.5.2 Con�guring a DB Connection

Before proceeding, make sure you have installed both the PDO25 PHP ex-
tension and the PDO driver for the database you are using (e.g. pdo_mysql

for MySQL). This is a basic requirement if your application uses a relational
database.

With those installed, open the �le config/db.php and change the para-
meters to be correct for your database. By default, the �le contains the
following:

<?php

return [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=localhost;dbname=yii2basic',

'username' => 'root',

'password' => '',

'charset' => 'utf8',

];

The config/db.php �le is a typical �le-based con�guration tool. This particu-
lar con�guration �le speci�es the parameters needed to create and initialize
a yii\db\Connection instance through which you can make SQL queries
against the underlying database.

The DB connection con�gured above can be accessed in the application
code via the expression Yii::$app->db.

Info: The config/db.php �le will be included by the main ap-
plication con�guration config/web.php, which speci�es how the
application instance should be initialized. For more information,
please refer to the Con�gurations section.

25http://www.php.net/manual/en/book.pdo.php

http://www.php.net/manual/en/book.pdo.php

34 CHAPTER 2. GETTING STARTED

If you need to work with databases support for which isn't bundled with Yii,
check the following extensions:

• Informix26

• IBM DB227

• Firebird28

2.5.3 Creating an Active Record

To represent and fetch the data in the country table, create an Active Record-
derived class named Country, and save it in the �le models/Country.php.

<?php

namespace app\models;

use yii\db\ActiveRecord;

class Country extends ActiveRecord

{

}

The Country class extends from yii\db\ActiveRecord. You do not need to
write any code inside of it! With just the above code, Yii will guess the
associated table name from the class name.

Info: If no direct match can be made from the class name to
the table name, you can override the yii\db\ActiveRecord::

tableName() method to explicitly specify the associated table
name.

Using the Country class, you can easily manipulate data in the country table,
as shown in these snippets:

use app\models\Country;

// get all rows from the country table and order them by "name"

$countries = Country::find()->orderBy('name')->all();

// get the row whose primary key is "US"

$country = Country::findOne('US');

// displays "United States"

echo $country->name;

// modifies the country name to be "U.S.A." and save it to database

$country->name = 'U.S.A.';

$country->save();

26https://github.com/edgardmessias/yii2-informix
27https://github.com/edgardmessias/yii2-ibm-db2
28https://github.com/edgardmessias/yii2-firebird

https://github.com/edgardmessias/yii2-informix
https://github.com/edgardmessias/yii2-ibm-db2
https://github.com/edgardmessias/yii2-firebird

2.5. WORKING WITH DATABASES 35

Info: Active Record is a powerful way to access and manipulate
database data in an object-oriented fashion. You may �nd more
detailed information in the Active Record section. Alternatively,
you may also interact with a database using a lower-level data
accessing method called Data Access Objects.

2.5.4 Creating an Action

To expose the country data to end users, you need to create a new action.
Instead of placing the new action in the site controller, like you did in the
previous sections, it makes more sense to create a new controller speci�c-
ally for all actions related to the country data. Name this new controller
CountryController, and create an index action in it, as shown in the following.

<?php

namespace app\controllers;

use yii\web\Controller;

use yii\data\Pagination;

use app\models\Country;

class CountryController extends Controller

{

public function actionIndex()

{

$query = Country::find();

$pagination = new Pagination([

'defaultPageSize' => 5,

'totalCount' => $query->count(),

]);

$countries = $query->orderBy('name')

->offset($pagination->offset)

->limit($pagination->limit)

->all();

return $this->render('index', [

'countries' => $countries,

'pagination' => $pagination,

]);

}

}

Save the above code in the �le controllers/CountryController.php.

The index action calls Country::find(). This Active Record method builds
a DB query and retrieves all of the data from the country table. To limit the
number of countries returned in each request, the query is paginated with
the help of a yii\data\Pagination object. The Pagination object serves two
purposes:

36 CHAPTER 2. GETTING STARTED

• Sets the offset and limit clauses for the SQL statement represented
by the query so that it only returns a single page of data at a time (at
most 5 rows in a page).

• It's used in the view to display a pager consisting of a list of page
buttons, as will be explained in the next subsection.

At the end of the code, the index action renders a view named index, and
passes the country data as well as the pagination information to it.

2.5.5 Creating a View

Under the views directory, �rst create a sub-directory named country. This
folder will be used to hold all the views rendered by the country controller.
Within the views/country directory, create a �le named index.php containing
the following:

<?php

use yii\helpers\Html;

use yii\widgets\LinkPager;

?>

<h1>Countries</h1>

<?php foreach ($countries as $country): ?>

<?= Html::encode("{$country->name} ({$country->code})") ?>:

<?= $country->population ?>

<?php endforeach; ?>

<?= LinkPager::widget(['pagination' => $pagination]) ?>

The view has two sections relative to displaying the country data. In the
�rst part, the provided country data is traversed and rendered as an un-
ordered HTML list. In the second part, a yii\widgets\LinkPager widget
is rendered using the pagination information passed from the action. The
LinkPager widget displays a list of page buttons. Clicking on any of them will
refresh the country data in the corresponding page.

2.5.6 Trying it Out

To see how all of the above code works, use your browser to access the
following URL:

http://hostname/index.php?r=country%2Findex

2.5. WORKING WITH DATABASES 37

At �rst, you will see a page showing �ve countries. Below the countries,
you will see a pager with four buttons. If you click on the button �2�, you
will see the page display another �ve countries in the database: the second
page of records. Observe more carefully and you will �nd that the URL in
the browser also changes to

http://hostname/index.php?r=country%2Findex&page=2

Behind the scenes, yii\data\Pagination is providing all of the necessary
functionality to paginate a data set:

• Initially, yii\data\Pagination represents the �rst page, which re�ects
the country SELECT query with the clause LIMIT 5 OFFSET 0. As a
result, the �rst �ve countries will be fetched and displayed.

• The yii\widgets\LinkPager widget renders the page buttons using
the URLs created by yii\data\Pagination::createUrl(). The URLs
will contain the query parameter page, which represents the di�erent
page numbers.

• If you click the page button �2�, a new request for the route country/

index will be triggered and handled. yii\data\Pagination reads the
page query parameter from the URL and sets the current page number
to 2. The new country query will thus have the clause LIMIT 5 OFFSET 5

and return the next �ve countries for display.

38 CHAPTER 2. GETTING STARTED

2.5.7 Summary

In this section, you learned how to work with a database. You also learned
how to fetch and display data in pages with the help of yii\data\Pagination
and yii\widgets\LinkPager.

In the next section, you will learn how to use the powerful code gen-
eration tool, called Gii29, to help you rapidly implement some commonly
required features, such as the Create-Read-Update-Delete (CRUD) opera-
tions for working with the data in a database table. As a matter of fact, the
code you have just written can all be automatically generated in Yii using
the Gii tool.

2.6 Generating Code with Gii

This section will describe how to use Gii30 to automatically generate code
that implements some common Web site features. Using Gii to auto-generate
code is simply a matter of entering the right information per the instructions
shown on the Gii Web pages.

Through this tutorial, you will learn how to:
• enable Gii in your application,
• use Gii to generate an Active Record class,
• use Gii to generate the code implementing the CRUD operations for a
DB table,

• customize the code generated by Gii.

2.6.1 Starting Gii

Gii31 is provided in Yii as a module. You can enable Gii by con�guring it in
the yii\base\Application::modules property of the application. Depend-
ing upon how you created your application, you may �nd the following code
is already provided in the config/web.php con�guration �le:

$config = [...];

if (YII_ENV_DEV) {

$config['bootstrap'][] = 'gii';

$config['modules']['gii'] = [

'class' => 'yii\gii\Module',

];

}

The above con�guration states that when in development environment, the
application should include a module named gii, which is of class yii\gii

\Module.

29https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md
30https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md
31https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md

https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md

2.6. GENERATING CODE WITH GII 39

If you check the entry script web/index.php of your application, you will
�nd the following line, which essentially makes YII_ENV_DEV to be true.

defined('YII_ENV') or define('YII_ENV', 'dev');

Thanks to that line, your application is in development mode, and will have
already enabled Gii, per the above con�guration. You can now access Gii
via the following URL:

http://hostname/index.php?r=gii

Note: If you are accessing Gii from a machine other than loc-
alhost, the access will be denied by default for security purpose.
You can con�gure Gii to add the allowed IP addresses as follows,

'gii' => [

'class' => 'yii\gii\Module',

'allowedIPs' => ['127.0.0.1', '::1', '192.168.0.*', '

192.168.178.20'] // adjust this to your needs

],

2.6.2 Generating an Active Record Class

To use Gii to generate an Active Record class, select the �Model Generator�
(by clicking the link on the Gii index page). Then �ll out the form as follows:

• Table Name: country

• Model Class: Country

40 CHAPTER 2. GETTING STARTED

Next, click on the �Preview� button. You will see models/Country.php is
listed in the resulting class �le to be created. You may click on the name of
the class �le to preview its content.

When using Gii, if you have already created the same �le and would be
overwriting it, click the diff button next to the �le name to see the di�erences
between the code to be generated and the existing version.

2.6. GENERATING CODE WITH GII 41

When overwriting an existing �le, check the box next to �overwrite� and
then click the �Generate� button. If creating a new �le, you can just click
�Generate�.

Next, you will see a con�rmation page indicating the code has been
successfully generated. If you had an existing �le, you'll also see a message
indicating that it was overwritten with the newly generated code.

2.6.3 Generating CRUD Code

CRUD stands for Create, Read, Update, and Delete, representing the four
common tasks taken with data on most Web sites. To create CRUD func-
tionality using Gii, select the �CRUD Generator� (by clicking the link on the
Gii index page). For the �country� example, �ll out the resulting form as
follows:

• Model Class: app\models\Country

• Search Model Class: app\models\CountrySearch

• Controller Class: app\controllers\CountryController

42 CHAPTER 2. GETTING STARTED

Next, click on the �Preview� button. You will see a list of �les to be
generated, as shown below.

If you previously created the controllers/CountryController.php and views

/country/index.php �les (in the databases section of the guide), check the
�overwrite� box to replace them. (The previous versions did not have full
CRUD support.)

2.6. GENERATING CODE WITH GII 43

2.6.4 Trying it Out

To see how it works, use your browser to access the following URL:

http://hostname/index.php?r=country%2Findex

You will see a data grid showing the countries from the database table. You
may sort the grid, or �lter it by entering �lter conditions in the column
headers.

For each country displayed in the grid, you may choose to view its details,
update it, or delete it. You may also click on the �Create Country� button
on top of the grid to be provided with a form for creating a new country.

44 CHAPTER 2. GETTING STARTED

The following is the list of the �les generated by Gii, in case you want to
investigate how these features are implemented, or to customize them:

• Controller: controllers/CountryController.php

• Models: models/Country.php and models/CountrySearch.php

• Views: views/country/*.php

Info: Gii is designed to be a highly customizable and extensible
code generation tool. Using it wisely can greatly accelerate your
application development speed. For more details, please refer to
the Gii32 section.

2.6.5 Summary

In this section, you have learned how to use Gii to generate the code that
implements complete CRUD functionality for content stored in a database
table.

2.7 Looking Ahead

If you've read through the entire �Getting Started� chapter, you have now
created a complete Yii application. In the process, you have learned how to
implement some commonly needed features, such as getting data from users
via an HTML form, fetching data from a database, and displaying data in a

32https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md

https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md

2.7. LOOKING AHEAD 45

paginated fashion. You have also learned how to use Gii33 to generate code
automatically. Using Gii for code generation turns the bulk of your Web
development process into a task as simple as just �lling out some forms.

This section will summarize the Yii resources available to help you be
more productive when using the framework.

• Documentation
� The De�nitive Guide34: As the name indicates, the guide precisely
de�nes how Yii should work and provides general guidance about
using Yii. It is the single most important Yii tutorial, and one
that you should read before writing any Yii code.

� The Class Reference35: This speci�es the usage of every class
provided by Yii. It should be mainly used when you are writ-
ing code and want to understand the usage of a particular class,
method, property. Usage of the class reference is best only after
a contextual understanding of the entire framework.

� The Wiki Articles36: The wiki articles are written by Yii users
based on their own experiences. Most of them are written like
cookbook recipes, and show how to solve particular problems us-
ing Yii. While the quality of these articles may not be as good as
the De�nitive Guide, they are useful in that they cover broader
topics and can often provide ready-to-use solutions.

� Books37

• Extensions38: Yii boasts a library of thousands of user-contributed
extensions that can be easily plugged into your applications, thereby
making your application development even faster and easier.

• Community
� Forum: http://www.yiiframework.com/forum/
� IRC chat: The #yii channel on the freenode network (irc://

irc.freenode.net/yii)
� Gitter chat: https://gitter.im/yiisoft/yii2
� GitHub: https://github.com/yiisoft/yii2
� Facebook: https://www.facebook.com/groups/yiitalk/
� Twitter: https://twitter.com/yiiframework
� LinkedIn: https://www.linkedin.com/groups/yii-framework-1483367
� Stackover�ow: http://stackoverflow.com/questions/tagged/

yii2

33https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md
34http://www.yiiframework.com/doc-2.0/guide-README.html
35http://www.yiiframework.com/doc-2.0/index.html
36http://www.yiiframework.com/wiki/?tag=yii2
37http://www.yiiframework.com/doc/
38http://www.yiiframework.com/extensions/

http://www.yiiframework.com/forum/
irc://irc.freenode.net/yii
irc://irc.freenode.net/yii
https://gitter.im/yiisoft/yii2
https://github.com/yiisoft/yii2
https://www.facebook.com/groups/yiitalk/
https://twitter.com/yiiframework
https://www.linkedin.com/groups/yii-framework-1483367
http://stackoverflow.com/questions/tagged/yii2
http://stackoverflow.com/questions/tagged/yii2
https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md
http://www.yiiframework.com/doc-2.0/guide-README.html
http://www.yiiframework.com/doc-2.0/index.html
http://www.yiiframework.com/wiki/?tag=yii2
http://www.yiiframework.com/doc/
http://www.yiiframework.com/extensions/

46 CHAPTER 2. GETTING STARTED

Chapter 3

Application Structure

3.1 Overview

Yii applications are organized according to the model-view-controller (MVC)1

architectural pattern. Models represent data, business logic and rules; views
are output representation of models; and controllers take input and convert
it to commands for models and views.

Besides MVC, Yii applications also have the following entities:

• entry scripts: they are PHP scripts that are directly accessible by end
users. They are responsible for starting a request handling cycle.

• applications: they are globally accessible objects that manage applic-
ation components and coordinate them to ful�ll requests.

• application components: they are objects registered with applications
and provide various services for ful�lling requests.

• modules: they are self-contained packages that contain complete MVC
by themselves. An application can be organized in terms of multiple
modules.

• �lters: they represent code that need to be invoked before and after
the actual handling of each request by controllers.

• widgets: they are objects that can be embedded in views. They may
contain controller logic and can be reused in di�erent views.

The following diagram shows the static structure of an application:

1http://wikipedia.org/wiki/Model-view-controller

47

http://wikipedia.org/wiki/Model-view-controller

48 CHAPTER 3. APPLICATION STRUCTURE

3.2 Entry Scripts

Entry scripts are the �rst step in the application bootstrapping process. An
application (either Web application or console application) has a single entry
script. End users make requests to entry scripts which instantiate application
instances and forward the requests to them.

Entry scripts for Web applications must be stored under Web accessible
directories so that they can be accessed by end users. They are often named
as index.php, but can also use any other names, provided Web servers can
locate them.

Entry scripts for console applications are usually stored under the base
path of applications and are named as yii (with the .php su�x). They should
be made executable so that users can run console applications through the
command ./yii <route> [arguments] [options].

Entry scripts mainly do the following work:
• De�ne global constants;
• Register Composer autoloader2;
• Include the Yii class �le;
• Load application con�guration;
• Create and con�gure an application instance;

2https://getcomposer.org/doc/01-basic-usage.md#autoloading

https://getcomposer.org/doc/01-basic-usage.md#autoloading

3.2. ENTRY SCRIPTS 49

• Call yii\base\Application::run() to process the incoming request.

3.2.1 Web Applications

The following is the code in the entry script for the Basic Web Project
Template.

<?php

defined('YII_DEBUG') or define('YII_DEBUG', true);

defined('YII_ENV') or define('YII_ENV', 'dev');

// register Composer autoloader

require(__DIR__ . '/../vendor/autoload.php');

// include Yii class file

require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

// load application configuration

$config = require(__DIR__ . '/../config/web.php');

// create, configure and run application

(new yii\web\Application($config))->run();

3.2.2 Console Applications

Similarly, the following is the code for the entry script of a console applica-
tion:

#!/usr/bin/env php

<?php

/**

* Yii console bootstrap file.

*

* @link http://www.yiiframework.com/

* @copyright Copyright (c) 2008 Yii Software LLC

* @license http://www.yiiframework.com/license/

*/

defined('YII_DEBUG') or define('YII_DEBUG', true);

defined('YII_ENV') or define('YII_ENV', 'dev');

// register Composer autoloader

require(__DIR__ . '/vendor/autoload.php');

// include Yii class file

require(__DIR__ . '/vendor/yiisoft/yii2/Yii.php');

// load application configuration

$config = require(__DIR__ . '/config/console.php');

$application = new yii\console\Application($config);

$exitCode = $application->run();

50 CHAPTER 3. APPLICATION STRUCTURE

exit($exitCode);

3.2.3 De�ning Constants

Entry scripts are the best place for de�ning global constants. Yii supports
the following three constants:

• YII_DEBUG: speci�es whether the application is running in debug mode.
When in debug mode, an application will keep more log information,
and will reveal detailed error call stacks if exceptions are thrown. For
this reason, debug mode should be used mainly during development.
The default value of YII_DEBUG is false.

• YII_ENV: speci�es which environment the application is running in. This
will be described in more detail in the Con�gurations section. The
default value of YII_ENV is 'prod', meaning the application is running
in production environment.

• YII_ENABLE_ERROR_HANDLER: speci�es whether to enable the error handler
provided by Yii. The default value of this constant is true.

When de�ning a constant, we often use the code like the following:

defined('YII_DEBUG') or define('YII_DEBUG', true);

which is equivalent to the following code:

if (!defined('YII_DEBUG')) {

define('YII_DEBUG', true);

}

Clearly the former is more succinct and easier to understand.

Constant de�nitions should be done at the very beginning of an entry
script so that they can take e�ect when other PHP �les are being included.

3.3 Applications

Applications are objects that govern the overall structure and lifecycle of Yii
application systems. Each Yii application system contains a single applic-
ation object which is created in the entry script and is globally accessible
through the expression \Yii::$app.

Info: Depending on the context, when we say �an application�, it
can mean either an application object or an application system.

There are two types of applications: yii\web\Application and yii\console
\Application. As the names indicate, the former mainly handles Web re-
quests, while the latter handles console command requests.

3.3. APPLICATIONS 51

3.3.1 Application Con�gurations

When an entry script creates an application, it will load a con�guration and
apply it to the application, as follows:

require(__DIR__ . '/../vendor/autoload.php');

require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

// load application configuration

$config = require(__DIR__ . '/../config/web.php');

// instantiate and configure the application

(new yii\web\Application($config))->run();

Like normal con�gurations, application con�gurations specify how to ini-
tialize properties of application objects. Because application con�gurations
are often very complex, they usually are kept in con�guration �les, like the
web.php �le in the above example.

3.3.2 Application Properties

There are many important application properties that you should con�gure
in application con�gurations. These properties typically describe the envir-
onment that applications are running in. For example, applications need to
know how to load controllers, where to store temporary �les, etc. In the
following, we will summarize these properties.

Required Properties

In any application, you should at least con�gure two properties: yii\base

\Application::id and yii\base\Application::basePath.

yii\base\Application::id The yii\base\Application::id property
speci�es a unique ID that di�erentiates an application from others. It is
mainly used programmatically. Although not a requirement, for best inter-
operability it is recommended that you use only alphanumeric characters
when specifying an application ID.

yii\base\Application::basePath The yii\base\Application::basePath
property speci�es the root directory of an application. It is the directory
that contains all protected source code of an application system. Under this
directory, you normally will see sub-directories such as models, views, and
controllers, which contain source code corresponding to the MVC pattern.

You may con�gure the yii\base\Application::basePath property us-
ing a directory path or a path alias. In both forms, the corresponding direct-
ory must exist, or an exception will be thrown. The path will be normalized
by calling the realpath() function.

52 CHAPTER 3. APPLICATION STRUCTURE

The yii\base\Application::basePath property is often used to derive
other important paths (e.g. the runtime path). For this reason, a path alias
named @app is prede�ned to represent this path. Derived paths may then be
formed using this alias (e.g. @app/runtime to refer to the runtime directory).

Important Properties

The properties described in this subsection often need to be con�gured be-
cause they di�er across di�erent applications.

yii\base\Application::aliases This property allows you to de�ne a
set of aliases in terms of an array. The array keys are alias names, and the
array values are the corresponding path de�nitions. For example:

[

'aliases' => [

'@name1' => 'path/to/path1',

'@name2' => 'path/to/path2',

],

]

This property is provided so that you can de�ne aliases in terms of applica-
tion con�gurations instead of by calling the Yii::setAlias() method.

yii\base\Application::bootstrap This is a very useful property. It
allows you to specify an array of components that should be run during
the application yii\base\Application::bootstrap(). For example, if you
want a module to customize the URL rules, you may list its ID as an element
in this property.

Each component listed in this property may be speci�ed in one of the
following formats:

• an application component ID as speci�ed via components,
• a module ID as speci�ed via modules,
• a class name,
• a con�guration array,
• an anonymous function that creates and returns a component.

For example:

[

'bootstrap' => [

// an application component ID or module ID

'demo',

// a class name

'app\components\Profiler',

// a configuration array

[

'class' => 'app\components\Profiler',

3.3. APPLICATIONS 53

'level' => 3,

],

// an anonymous function

function () {

return new app\components\Profiler();

}

],

]

Info: If a module ID is the same as an application component ID,
the application component will be used during the bootstrapping
process. If you want to use the module instead, you may specify
it using an anonymous function like the following:

[

function () {

return Yii::$app->getModule('user');

},

]

During the bootstrapping process, each component will be instantiated. If
the component class implements yii\base\BootstrapInterface, its yii

\base\BootstrapInterface::bootstrap() method will also be called.

Another practical example is in the application con�guration for the Ba-
sic Project Template, where the debug and gii modules are con�gured as
bootstrapping components when the application is running in the develop-
ment environment:

if (YII_ENV_DEV) {

// configuration adjustments for 'dev' environment

$config['bootstrap'][] = 'debug';

$config['modules']['debug'] = 'yii\debug\Module';

$config['bootstrap'][] = 'gii';

$config['modules']['gii'] = 'yii\gii\Module';

}

Note: Putting too many components in bootstrap will degrade
the performance of your application because for each request, the
same set of components need to be run. So use bootstrapping
components judiciously.

yii\web\Application::catchAll This property is supported by yii\web

\Application only. It speci�es a controller action which should handle all
user requests. This is mainly used when the application is in maintenance
mode and needs to handle all incoming requests via a single action.

54 CHAPTER 3. APPLICATION STRUCTURE

The con�guration is an array whose �rst element speci�es the route of
the action. The rest of the array elements (key-value pairs) specify the
parameters to be bound to the action. For example:

[

'catchAll' => [

'offline/notice',

'param1' => 'value1',

'param2' => 'value2',

],

]

Info: Debug panel on development environment will not work
when this property is enabled.

yii\base\Application::components This is the single most important
property. It allows you to register a list of named components called applic-
ation components that you can use in other places. For example:

[

'components' => [

'cache' => [

'class' => 'yii\caching\FileCache',

],

'user' => [

'identityClass' => 'app\models\User',

'enableAutoLogin' => true,

],

],

]

Each application component is speci�ed as a key-value pair in the array. The
key represents the component ID, while the value represents the component
class name or con�guration.

You can register any component with an application, and the component
can later be accessed globally using the expression \Yii::$app->componentID.

Please read the Application Components section for details.

yii\base\Application::controllerMap This property allows you to map
a controller ID to an arbitrary controller class. By default, Yii maps control-
ler IDs to controller classes based on a convention (e.g. the ID post would be
mapped to app\controllers\PostController). By con�guring this property, you
can break the convention for speci�c controllers. In the following example,
account will be mapped to app\controllers\UserController, while article will
be mapped to app\controllers\PostController.

[

'controllerMap' => [

'account' => 'app\controllers\UserController',

'article' => [

3.3. APPLICATIONS 55

'class' => 'app\controllers\PostController',

'enableCsrfValidation' => false,

],

],

]

The array keys of this property represent the controller IDs, while the array
values represent the corresponding controller class names or con�gurations.

yii\base\Application::controllerNamespace This property speci�es
the default namespace under which controller classes should be located. It
defaults to app\controllers. If a controller ID is post, by convention the cor-
responding controller class name (without namespace) would be PostController
, and the fully quali�ed class name would be app\controllers\PostController.

Controller classes may also be located under sub-directories of the dir-
ectory corresponding to this namespace. For example, given a controller ID
admin/post, the corresponding fully quali�ed controller class would be app\

controllers\admin\PostController.

It is important that the fully quali�ed controller classes should be auto-
loadable and the actual namespace of your controller classes match the value
of this property. Otherwise, you will receive a �Page Not Found� error when
accessing the application.

In case you want to break the convention as described above, you may
con�gure the controllerMap property.

yii\base\Application::language This property speci�es the language
in which the application should display content to end users. The default
value of this property is en, meaning English. You should con�gure this
property if your application needs to support multiple languages.

The value of this property determines various internationalization as-
pects, including message translation, date formatting, number formatting,
etc. For example, the yii\jui\DatePicker widget will use this property
value by default to determine in which language the calendar should be dis-
played and how the date should be formatted.

It is recommended that you specify a language in terms of an IETF
language tag3. For example, en stands for English, while en-US stands for
English (United States).

More details about this property can be found in the Internationalization
section.

yii\base\Application::modules This property speci�es the modules
that the application contains.

3http://en.wikipedia.org/wiki/IETF_language_tag

http://en.wikipedia.org/wiki/IETF_language_tag

56 CHAPTER 3. APPLICATION STRUCTURE

The property takes an array of module classes or con�gurations with the
array keys being the module IDs. For example:

[

'modules' => [

// a "booking" module specified with the module class

'booking' => 'app\modules\booking\BookingModule',

// a "comment" module specified with a configuration array

'comment' => [

'class' => 'app\modules\comment\CommentModule',

'db' => 'db',

],

],

]

Please refer to the Modules section for more details.

yii\base\Application::name This property speci�es the application name
that may be displayed to end users. Unlike the yii\base\Application::

id property, which should take a unique value, the value of this property is
mainly for display purposes; it does not need to be unique.

You do not always need to con�gure this property if none of your code
is using it.

yii\base\Application::params This property speci�es an array of glob-
ally accessible application parameters. Instead of using hardcoded numbers
and strings everywhere in your code, it is a good practice to de�ne them as
application parameters in a single place and use the parameters in places
where needed. For example, you may de�ne the thumbnail image size as a
parameter like the following:

[

'params' => [

'thumbnail.size' => [128, 128],

],

]

Then in your code where you need to use the size value, you can simply use
code like the following:

$size = \Yii::$app->params['thumbnail.size'];

$width = \Yii::$app->params['thumbnail.size'][0];

Later if you decide to change the thumbnail size, you only need to modify
it in the application con�guration; you don't need to touch any dependent
code.

yii\base\Application::sourceLanguage This property speci�es the lan-
guage that the application code is written in. The default value is 'en-US',

3.3. APPLICATIONS 57

meaning English (United States). You should con�gure this property if the
text content in your code is not in English.

Like the language property, you should con�gure this property in terms
of an IETF language tag4. For example, en stands for English, while en-US

stands for English (United States).
More details about this property can be found in the Internationalization

section.

yii\base\Application::timeZone This property is provided as an al-
ternative way of setting the default time zone of the PHP runtime. By con�g-
uring this property, you are essentially calling the PHP function date_default_timezone_set()5.
For example:

[

'timeZone' => 'America/Los_Angeles',

]

yii\base\Application::version This property speci�es the version of
the application. It defaults to '1.0'. You do not need to con�gure this
property if none of your code is using it.

Useful Properties

The properties described in this subsection are not commonly con�gured
because their default values derive from common conventions. However, you
may still con�gure them in case you want to break the conventions.

yii\base\Application::charset This property speci�es the charset that
the application uses. The default value is 'UTF-8', which should be kept as-is
for most applications unless you are working with a legacy system that uses
a lot of non-Unicode data.

yii\base\Application::defaultRoute This property speci�es the route
that an application should use when a request does not specify one. The
route may consist of a child module ID, a controller ID, and/or an action
ID. For example, help, post/create, or admin/post/create. If an action ID is
not given, this property will take the default value speci�ed in yii\base

\Controller::defaultAction.
For yii\web\Application, the default value of this property is 'site',

which means the SiteController controller and its default action should be
used. As a result, if you access the application without specifying a route,
it will show the result of app\controllers\SiteController::actionIndex().

4http://en.wikipedia.org/wiki/IETF_language_tag
5http://php.net/manual/en/function.date-default-timezone-set.php

http://en.wikipedia.org/wiki/IETF_language_tag
http://php.net/manual/en/function.date-default-timezone-set.php

58 CHAPTER 3. APPLICATION STRUCTURE

For yii\console\Application, the default value is 'help', which means
the core command yii\console\controllers\HelpController::actionIndex()
should be used. As a result, if you run the command yii without providing
any arguments, it will display the help information.

yii\base\Application::extensions This property speci�es the list of
extensions that are installed and used by the application. By default, it
will take the array returned by the �le @vendor/yiisoft/extensions.php. The
extensions.php �le is generated and maintained automatically when you use
Composer6 to install extensions. So in most cases, you do not need to con-
�gure this property.

In the special case when you want to maintain extensions manually, you
may con�gure this property as follows:

[

'extensions' => [

[

'name' => 'extension name',

'version' => 'version number',

'bootstrap' => 'BootstrapClassName', // optional, may also be a

configuration array

'alias' => [// optional

'@alias1' => 'to/path1',

'@alias2' => 'to/path2',

],

],

// ... more extensions like the above ...

],

]

As you can see, the property takes an array of extension speci�cations. Each
extension is speci�ed with an array consisting of name and version elements. If
an extension needs to run during the bootstrap process, a bootstrap element
may be speci�ed with a bootstrapping class name or a con�guration array.
An extension may also de�ne a few aliases.

yii\base\Application::layout This property speci�es the name of the
default layout that should be used when rendering a view. The default value
is 'main', meaning the layout �le main.php under the layout path should be
used. If both of the layout path and the view path are taking the default
values, the default layout �le can be represented as the path alias @app/views

/layouts/main.php.

You may con�gure this property to be false if you want to disable layout
by default, although this is very rare.

6https://getcomposer.org

https://getcomposer.org

3.3. APPLICATIONS 59

yii\base\Application::layoutPath This property speci�es the path where
layout �les should be looked for. The default value is the layouts sub-
directory under the view path. If the view path is taking its default value, the
default layout path can be represented as the path alias @app/views/layouts.

You may con�gure it as a directory or a path alias.

yii\base\Application::runtimePath This property speci�es the path
where temporary �les, such as log �les and cache �les, can be generated.
The default value is the directory represented by the alias @app/runtime.

You may con�gure it as a directory or a path alias. Note that the runtime
path must be writable by the process running the application. And the path
should be protected from being accessed by end users, because the temporary
�les under it may contain sensitive information.

To simplify access to this path, Yii has prede�ned a path alias named
@runtime for it.

yii\base\Application::viewPath This property speci�es the root dir-
ectory where view �les are located. The default value is the directory rep-
resented by the alias @app/views. You may con�gure it as a directory or a
path alias.

yii\base\Application::vendorPath This property speci�es the vendor
directory managed by Composer7. It contains all third party libraries used
by your application, including the Yii framework. The default value is the
directory represented by the alias @app/vendor.

You may con�gure this property as a directory or a path alias. When you
modify this property, make sure you also adjust the Composer con�guration
accordingly.

To simplify access to this path, Yii has prede�ned a path alias named
@vendor for it.

yii\console\Application::enableCoreCommands This property is sup-
ported by yii\console\Application only. It speci�es whether the core
commands included in the Yii release should be enabled. The default value
is true.

3.3.3 Application Events

An application triggers several events during the lifecycle of handling a re-
quest. You may attach event handlers to these events in application con�g-
urations as follows:

7https://getcomposer.org

https://getcomposer.org

60 CHAPTER 3. APPLICATION STRUCTURE

[

'on beforeRequest' => function ($event) {

// ...

},

]

The use of the on eventName syntax is described in the Con�gurations section.

Alternatively, you may attach event handlers during the bootstrapping
process after the application instance is created. For example:

\Yii::$app->on(\yii\base\Application::EVENT_BEFORE_REQUEST, function ($event

) {

// ...

});

yii\base\Application::EVENT_BEFORE_REQUEST

This event is triggered before an application handles a request. The actual
event name is beforeRequest.

When this event is triggered, the application instance has been con�gured
and initialized. So it is a good place to insert your custom code via the
event mechanism to intercept the request handling process. For example, in
the event handler, you may dynamically set the yii\base\Application::

language property based on some parameters.

yii\base\Application::EVENT_AFTER_REQUEST

This event is triggered after an application �nishes handling a request but
before sending the response. The actual event name is afterRequest.

When this event is triggered, the request handling is completed and you
may take this chance to do some postprocessing of the request or customize
the response.

Note that the yii\web\Response component also triggers some events
while it is sending out response content to end users. Those events are
triggered after this event.

yii\base\Application::EVENT_BEFORE_ACTION

This event is triggered before running every controller action. The actual
event name is beforeAction.

The event parameter is an instance of yii\base\ActionEvent. An event
handler may set the yii\base\ActionEvent::isValid property to be false

to stop running the action. For example:

[

'on beforeAction' => function ($event) {

if (some condition) {

$event->isValid = false;

3.3. APPLICATIONS 61

} else {

}

},

]

Note that the same beforeAction event is also triggered by modules and con-
trollers. Application objects are the �rst ones triggering this event, followed
by modules (if any), and �nally controllers. If an event handler sets yii

\base\ActionEvent::isValid to be false, all of the subsequent events will
NOT be triggered.

yii\base\Application::EVENT_AFTER_ACTION

This event is triggered after running every controller action. The actual
event name is afterAction.

The event parameter is an instance of yii\base\ActionEvent. Through
the yii\base\ActionEvent::result property, an event handler may access
or modify the action result. For example:

[

'on afterAction' => function ($event) {

if (some condition) {

// modify $event->result

} else {

}

},

]

Note that the same afterAction event is also triggered by modules and con-
trollers. These objects trigger this event in the reverse order as for that of
beforeAction. That is, controllers are the �rst objects triggering this event,
followed by modules (if any), and �nally applications.

62 CHAPTER 3. APPLICATION STRUCTURE

3.3.4 Application Lifecycle

When an entry script is being executed to handle a request, an application
will undergo the following lifecycle:

1. The entry script loads the application con�guration as an array.

2. The entry script creates a new instance of the application:

• yii\base\Application::preInit() is called, which con�gures
some high priority application properties, such as yii\base\Application
::basePath.

• Register the yii\base\Application::errorHandler.
• Con�gure application properties.
• yii\base\Application::init() is called which further calls yii
\base\Application::bootstrap() to run bootstrapping com-
ponents.

3. The entry script calls yii\base\Application::run() to run the ap-
plication:

• Trigger the yii\base\Application::EVENT_BEFORE_REQUEST event.
• Handle the request: resolve the request into a route and the as-
sociated parameters; create the module, controller, and action
objects as speci�ed by the route; and run the action.

• Trigger the yii\base\Application::EVENT_AFTER_REQUEST event.

3.4. APPLICATION COMPONENTS 63

• Send response to the end user.

4. The entry script receives the exit status from the application and com-
pletes the request processing.

3.4 Application Components

Applications are service locators. They host a set of the so-called applica-

tion components that provide di�erent services for processing requests. For
example, the urlManager component is responsible for routing Web requests
to appropriate controllers; the db component provides DB-related services;
and so on.

Each application component has an ID that uniquely identi�es itself
among other application components in the same application. You can access
an application component through the expression:

\Yii::$app->componentID

For example, you can use \Yii::$app->db to get the yii\db\Connection, and
\Yii::$app->cache to get the yii\caching\Cache registered with the applic-
ation.

An application component is created the �rst time it is accessed through
the above expression. Any further accesses will return the same component
instance.

Application components can be any objects. You can register them by
con�guring the yii\base\Application::components property in applica-
tion con�gurations. For example,

[

'components' => [

// register "cache" component using a class name

'cache' => 'yii\caching\ApcCache',

// register "db" component using a configuration array

'db' => [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=localhost;dbname=demo',

'username' => 'root',

'password' => '',

],

// register "search" component using an anonymous function

'search' => function () {

return new app\components\SolrService;

},

],

]

64 CHAPTER 3. APPLICATION STRUCTURE

Info: While you can register as many application components
as you want, you should do this judiciously. Application com-
ponents are like global variables. Using too many application
components can potentially make your code harder to test and
maintain. In many cases, you can simply create a local compon-
ent and use it when needed.

3.4.1 Bootstrapping Components

As mentioned above, an application component will only be instantiated
when it is being accessed the �rst time. If it is not accessed at all during a
request, it will not be instantiated. Sometimes, however, you may want to
instantiate an application component for every request, even if it is not expli-
citly accessed. To do so, you may list its ID in the yii\base\Application

::bootstrap property of the application.
For example, the following application con�guration makes sure the log

component is always loaded:

[

'bootstrap' => [

'log',

],

'components' => [

'log' => [

// configuration for "log" component

],

],

]

3.4.2 Core Application Components

Yii de�nes a set of core application components with �xed IDs and default
con�gurations. For example, the yii\web\Application::request compon-
ent is used to collect information about a user request and resolve it into
a route; the yii\base\Application::db component represents a database
connection through which you can perform database queries. It is with help
of these core application components that Yii applications are able to handle
user requests.

Below is the list of the prede�ned core application components. You may
con�gure and customize them like you do with normal application compon-
ents. When you are con�guring a core application component, if you do not
specify its class, the default one will be used.

• yii\web\AssetManager: manages asset bundles and asset publishing.
Please refer to the Managing Assets section for more details.

• yii\db\Connection: represents a database connection through which
you can perform DB queries. Note that when you con�gure this com-
ponent, you must specify the component class as well as other required

3.5. CONTROLLERS 65

component properties, such as yii\db\Connection::dsn. Please refer
to the Data Access Objects section for more details.

• yii\base\Application::errorHandler: handles PHP errors and ex-
ceptions. Please refer to the Handling Errors section for more details.

• yii\i18n\Formatter: formats data when they are displayed to end
users. For example, a number may be displayed with thousand separ-
ator, a date may be formatted in long format. Please refer to the Data
Formatting section for more details.

• yii\i18n\I18N: supports message translation and formatting. Please
refer to the Internationalization section for more details.

• yii\log\Dispatcher: manages log targets. Please refer to the Logging
section for more details.

• yii\swiftmailer\Mailer: supports mail composing and sending. Please
refer to the Mailing section for more details.

• yii\base\Application::response: represents the response being sent
to end users. Please refer to the Responses section for more details.

• yii\base\Application::request: represents the request received from
end users. Please refer to the Requests section for more details.

• yii\web\Session: represents the session information. This compon-
ent is only available in yii\web\Application. Please refer to the
Sessions and Cookies section for more details.

• yii\web\UrlManager: supports URL parsing and creation. Please
refer to the Routing and URL Creation section for more details.

• yii\web\User: represents the user authentication information. This
component is only available in yii\web\Application. Please refer to
the Authentication section for more details.

• yii\web\View: supports view rendering. Please refer to the Views
section for more details.

3.5 Controllers

Controllers are part of the MVC8 architecture. They are objects of classes
extending from yii\base\Controller and are responsible for processing
requests and generating responses. In particular, after taking over the control
from applications, controllers will analyze incoming request data, pass them
to models, inject model results into views, and �nally generate outgoing
responses.

3.5.1 Actions

Controllers are composed of actions which are the most basic units that end
users can address and request for execution. A controller can have one or

8http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

66 CHAPTER 3. APPLICATION STRUCTURE

multiple actions.

The following example shows a post controller with two actions: view and
create:

namespace app\controllers;

use Yii;

use app\models\Post;

use yii\web\Controller;

use yii\web\NotFoundHttpException;

class PostController extends Controller

{

public function actionView($id)

{

$model = Post::findOne($id);

if ($model === null) {

throw new NotFoundHttpException;

}

return $this->render('view', [

'model' => $model,

]);

}

public function actionCreate()

{

$model = new Post;

if ($model->load(Yii::$app->request->post()) && $model->save()) {

return $this->redirect(['view', 'id' => $model->id]);

} else {

return $this->render('create', [

'model' => $model,

]);

}

}

}

In the view action (de�ned by the actionView() method), the code �rst loads
the model according to the requested model ID; If the model is loaded suc-
cessfully, it will display it using a view named view. Otherwise, it will throw
an exception.

In the create action (de�ned by the actionCreate() method), the code
is similar. It �rst tries to populate a new instance of the model using the
request data and save the model. If both succeed it will redirect the browser
to the view action with the ID of the newly created model. Otherwise it will
display the create view through which users can provide the needed input.

3.5. CONTROLLERS 67

3.5.2 Routes

End users address actions through the so-called routes. A route is a string
that consists of the following parts:

• a module ID: this exists only if the controller belongs to a non-application
module;

• a controller ID: a string that uniquely identi�es the controller among
all controllers within the same application (or the same module if the
controller belongs to a module);

• an action ID: a string that uniquely identi�es the action among all
actions within the same controller.

Routes take the following format:

ControllerID/ActionID

or the following format if the controller belongs to a module:

ModuleID/ControllerID/ActionID

So if a user requests with the URL http://hostname/index.php?r=site/index,
the index action in the site controller will be executed. For more details on
how routes are resolved into actions, please refer to the Routing and URL
Creation section.

3.5.3 Creating Controllers

In yii\web\Application, controllers should extend from yii\web\Controller

or its child classes. Similarly in yii\console\Application, controllers
should extend from yii\console\Controller or its child classes. The fol-
lowing code de�nes a site controller:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller

{

}

Controller IDs

Usually, a controller is designed to handle the requests regarding a particular
type of resource. For this reason, controller IDs are often nouns referring to
the types of the resources that they are handling. For example, you may use
article as the ID of a controller that handles article data.

By default, controller IDs should contain these characters only: English
letters in lower case, digits, underscores, hyphens, and forward slashes. For
example, article and post-comment are both valid controller IDs, while article

?, PostComment, admin\post are not.

68 CHAPTER 3. APPLICATION STRUCTURE

A controller ID may also contain a subdirectory pre�x. For example,
admin/article stands for an article controller in the admin subdirectory un-
der the yii\base\Application::controllerNamespace. Valid characters
for subdirectory pre�xes include: English letters in lower and upper cases,
digits, underscores, and forward slashes, where forward slashes are used as
separators for multi-level subdirectories (e.g. panels/admin).

Controller Class Naming

Controller class names can be derived from controller IDs according to the
following procedure:

1. Turn the �rst letter in each word separated by hyphens into upper case.
Note that if the controller ID contains slashes, this rule only applies to
the part after the last slash in the ID.

2. Remove hyphens and replace any forward slashes with backward slashes.

3. Append the su�x Controller.

4. Prepend the yii\base\Application::controllerNamespace.

The following are some examples, assuming the yii\base\Application::

controllerNamespace takes the default value app\controllers:

• article becomes app\controllers\ArticleController;
• post-comment becomes app\controllers\PostCommentController;
• admin/post-comment becomes app\controllers\admin\PostCommentController
;

• adminPanels/post-comment becomes app\controllers\adminPanels\PostCommentController
.

Controller classes must be autoloadable. For this reason, in the above ex-
amples, the article controller class should be saved in the �le whose alias is
@app/controllers/ArticleController.php; while the admin/post-comment control-
ler should be in @app/controllers/admin/PostCommentController.php.

Info: The last example admin/post-comment shows how you can
put a controller under a sub-directory of the yii\base\Application
::controllerNamespace. This is useful when you want to organ-
ize your controllers into several categories and you do not want
to use modules.

Controller Map

You can con�gure the yii\base\Application::controllerMap to overcome
the constraints of the controller IDs and class names described above. This

3.5. CONTROLLERS 69

is mainly useful when you are using third-party controllers and you do not
have control over their class names.

You may con�gure the yii\base\Application::controllerMap in the
application con�guration. For example:

[

'controllerMap' => [

// declares "account" controller using a class name

'account' => 'app\controllers\UserController',

// declares "article" controller using a configuration array

'article' => [

'class' => 'app\controllers\PostController',

'enableCsrfValidation' => false,

],

],

]

Default Controller

Each application has a default controller speci�ed via the yii\base\Application
::defaultRoute property. When a request does not specify a route, the
route speci�ed by this property will be used. For yii\web\Application, its
value is 'site', while for yii\console\Application, it is help. Therefore, if
a URL is http://hostname/index.php, then the site controller will handle the
request.

You may change the default controller with the following application
con�guration:

[

'defaultRoute' => 'main',

]

3.5.4 Creating Actions

Creating actions can be as simple as de�ning the so-called action methods in
a controller class. An action method is a public method whose name starts
with the word action. The return value of an action method represents the
response data to be sent to end users. The following code de�nes two actions,
index and hello-world:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller

{

public function actionIndex()

{

return $this->render('index');

70 CHAPTER 3. APPLICATION STRUCTURE

}

public function actionHelloWorld()

{

return 'Hello World';

}

}

Action IDs

An action is often designed to perform a particular manipulation of a re-
source. For this reason, action IDs are usually verbs, such as view, update,
etc.

By default, action IDs should contain these characters only: English
letters in lower case, digits, underscores, and hyphens (you can use hyphens
to separate words). For example, view, update2, and comment-post are all valid
action IDs, while view? and Update are not.

You can create actions in two ways: inline actions and standalone ac-
tions. An inline action is de�ned as a method in the controller class, while a
standalone action is a class extending yii\base\Action or its child classes.
Inline actions take less e�ort to create and are often preferred if you have
no intention to reuse these actions. Standalone actions, on the other hand,
are mainly created to be used in di�erent controllers or be redistributed as
extensions.

Inline Actions

Inline actions refer to the actions that are de�ned in terms of action methods
as we just described.

The names of the action methods are derived from action IDs according
to the following procedure:

1. Turn the �rst letter in each word of the action ID into upper case.

2. Remove hyphens.

3. Prepend the pre�x action.

For example, index becomes actionIndex, and hello-world becomes actionHelloWorld
.

Note: The names of the action methods are case-sensitive. If
you have a method named ActionIndex, it will not be considered
as an action method, and as a result, the request for the index

action will result in an exception. Also note that action methods
must be public. A private or protected method does NOT de�ne
an inline action.

3.5. CONTROLLERS 71

Inline actions are the most commonly de�ned actions because they take little
e�ort to create. However, if you plan to reuse the same action in di�erent
places, or if you want to redistribute an action, you should consider de�ning
it as a standalone action.

Standalone Actions

Standalone actions are de�ned in terms of action classes extending yii\base
\Action or its child classes. For example, in the Yii releases, there are yii

\web\ViewAction and yii\web\ErrorAction, both of which are standalone
actions.

To use a standalone action, you should declare it in the action map by
overriding the yii\base\Controller::actions() method in your controller
classes like the following:

public function actions()

{

return [

// declares "error" action using a class name

'error' => 'yii\web\ErrorAction',

// declares "view" action using a configuration array

'view' => [

'class' => 'yii\web\ViewAction',

'viewPrefix' => '',

],

];

}

As you can see, the actions() method should return an array whose keys are
action IDs and values the corresponding action class names or con�gurations.
Unlike inline actions, action IDs for standalone actions can contain arbitrary
characters, as long as they are declared in the actions() method.

To create a standalone action class, you should extend yii\base\Action

or a child class, and implement a public method named run(). The role of
the run() method is similar to that of an action method. For example,

<?php

namespace app\components;

use yii\base\Action;

class HelloWorldAction extends Action

{

public function run()

{

return "Hello World";

}

}

72 CHAPTER 3. APPLICATION STRUCTURE

Action Results

The return value of an action method or of the run() method of a standalone
action is signi�cant. It stands for the result of the corresponding action.

The return value can be a response object which will be sent to the end
user as the response.

• For yii\web\Application, the return value can also be some arbit-
rary data which will be assigned to yii\web\Response::data and be
further converted into a string representing the response body.

• For yii\console\Application, the return value can also be an integer
representing the yii\console\Response::exitStatus of the command
execution.

In the examples shown above, the action results are all strings which will be
treated as the response body to be sent to end users. The following example
shows how an action can redirect the user browser to a new URL by returning
a response object (because the yii\web\Controller::redirect() method
returns a response object):

public function actionForward()

{

// redirect the user browser to http://example.com

return $this->redirect('http://example.com');

}

Action Parameters

The action methods for inline actions and the run() methods for standalone
actions can take parameters, called action parameters. Their values are ob-
tained from requests. For yii\web\Application, the value of each action
parameter is retrieved from $_GET using the parameter name as the key;
for yii\console\Application, they correspond to the command line argu-
ments.

In the following example, the view action (an inline action) has declared
two parameters: $id and $version.

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller

{

public function actionView($id, $version = null)

{

// ...

}

}

The action parameters will be populated as follows for di�erent requests:

3.5. CONTROLLERS 73

• http://hostname/index.php?r=post/view&id=123: the $id parameter will be
�lled with the value '123', while $version is still null because there is
no version query parameter.

• http://hostname/index.php?r=post/view&id=123&version=2: the $id and $version

parameters will be �lled with '123' and '2', respectively.
• http://hostname/index.php?r=post/view: a yii\web\BadRequestHttpException
exception will be thrown because the required $id parameter is not
provided in the request.

• http://hostname/index.php?r=post/view&id[]=123: a yii\web\BadRequestHttpException
exception will be thrown because $id parameter is receiving an unex-
pected array value ['123'].

If you want an action parameter to accept array values, you should type-hint
it with array, like the following:

public function actionView(array $id, $version = null)

{

// ...

}

Now if the request is http://hostname/index.php?r=post/view&id[]=123, the $id

parameter will take the value of ['123']. If the request is http://hostname

/index.php?r=post/view&id=123, the $id parameter will still receive the same
array value because the scalar value '123' will be automatically turned into
an array.

The above examples mainly show how action parameters work for Web
applications. For console applications, please refer to the Console Commands
section for more details.

Default Action

Each controller has a default action speci�ed via the yii\base\Controller
::defaultAction property. When a route contains the controller ID only,
it implies that the default action of the speci�ed controller is requested.

By default, the default action is set as index. If you want to change the
default value, simply override this property in the controller class, like the
following:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller

{

public $defaultAction = 'home';

public function actionHome()

{

return $this->render('home');

}

74 CHAPTER 3. APPLICATION STRUCTURE

}

3.5.5 Controller Lifecycle

When processing a request, an application will create a controller based on
the requested route. The controller will then undergo the following lifecycle
to ful�ll the request:

1. The yii\base\Controller::init() method is called after the con-
troller is created and con�gured.

2. The controller creates an action object based on the requested action
ID:

• If the action ID is not speci�ed, the yii\base\Controller::

defaultAction will be used.
• If the action ID is found in the yii\base\Controller::actions(),
a standalone action will be created;

• If the action ID is found to match an action method, an inline
action will be created;

• Otherwise an yii\base\InvalidRouteException exception will
be thrown.

3. The controller sequentially calls the beforeAction() method of the ap-
plication, the module (if the controller belongs to a module), and the
controller.

• If one of the calls returns false, the rest of the uncalled beforeAction

() methods will be skipped and the action execution will be can-
celled.

• By default, each beforeAction()method call will trigger a beforeAction

event to which you can attach a handler.

4. The controller runs the action.

• The action parameters will be analyzed and populated from the
request data.

5. The controller sequentially calls the afterAction() method of the con-
troller, the module (if the controller belongs to a module), and the
application.

• By default, each afterAction()method call will trigger an afterAction

event to which you can attach a handler.

6. The application will take the action result and assign it to the response.

3.6. MODELS 75

3.5.6 Best Practices

In a well-designed application, controllers are often very thin, with each
action containing only a few lines of code. If your controller is rather com-
plicated, it usually indicates that you should refactor it and move some code
to other classes.

Here are some speci�c best practices. Controllers

• may access the request data;
• may call methods of models and other service components with request
data;

• may use views to compose responses;
• should NOT process the request data - this should be done in the model
layer;

• should avoid embedding HTML or other presentational code - this is
better done in views.

3.6 Models

Models are part of the MVC9 architecture. They are objects representing
business data, rules and logic.

You can create model classes by extending yii\base\Model or its child
classes. The base class yii\base\Model supports many useful features:

• Attributes: represent the business data and can be accessed like normal
object properties or array elements;

• Attribute labels: specify the display labels for attributes;
• Massive assignment: supports populating multiple attributes in a single
step;

• Validation rules: ensures input data based on the declared validation
rules;

• Data Exporting: allows model data to be exported in terms of arrays
with customizable formats.

The Model class is also the base class for more advanced models, such as
Active Record. Please refer to the relevant documentation for more details
about these advanced models.

Info: You are not required to base your model classes on yii

\base\Model. However, because there are many Yii components
built to support yii\base\Model, it is usually the preferable base
class for a model.

9http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

76 CHAPTER 3. APPLICATION STRUCTURE

3.6.1 Attributes

Models represent business data in terms of attributes. Each attribute is like
a publicly accessible property of a model. The method yii\base\Model::

attributes() speci�es what attributes a model class has.
You can access an attribute like accessing a normal object property:

$model = new \app\models\ContactForm;

// "name" is an attribute of ContactForm

$model->name = 'example';

echo $model->name;

You can also access attributes like accessing array elements, thanks to the
support for ArrayAccess10 and Traversable11 by yii\base\Model:

$model = new \app\models\ContactForm;

// accessing attributes like array elements

$model['name'] = 'example';

echo $model['name'];

// Model is traversable using foreach.

foreach ($model as $name => $value) {

echo "$name: $value\n";

}

De�ning Attributes

By default, if your model class extends directly from yii\base\Model, all
its non-static public member variables are attributes. For example, the
ContactForm model class below has four attributes: name, email, subject and
body. The ContactForm model is used to represent the input data received
from an HTML form.

namespace app\models;

use yii\base\Model;

class ContactForm extends Model

{

public $name;

public $email;

public $subject;

public $body;

}

You may override yii\base\Model::attributes() to de�ne attributes in a
di�erent way. The method should return the names of the attributes in a
model. For example, yii\db\ActiveRecord does so by returning the column

10http://php.net/manual/en/class.arrayaccess.php
11http://php.net/manual/en/class.traversable.php

http://php.net/manual/en/class.arrayaccess.php
http://php.net/manual/en/class.traversable.php

3.6. MODELS 77

names of the associated database table as its attribute names. Note that you
may also need to override the magic methods such as __get(), __set() so that
the attributes can be accessed like normal object properties.

Attribute Labels

When displaying values or getting input for attributes, you often need to dis-
play some labels associated with attributes. For example, given an attribute
named firstName, you may want to display a label First Name which is more
user-friendly when displayed to end users in places such as form inputs and
error messages.

You can get the label of an attribute by calling yii\base\Model::getAttributeLabel().
For example,

$model = new \app\models\ContactForm;

// displays "Name"

echo $model->getAttributeLabel('name');

By default, attribute labels are automatically generated from attribute names.
The generation is done by the method yii\base\Model::generateAttributeLabel().
It will turn camel-case variable names into multiple words with the �rst let-
ter in each word in upper case. For example, username becomes Username, and
firstName becomes First Name.

If you do not want to use automatically generated labels, you may over-
ride yii\base\Model::attributeLabels() to explicitly declare attribute
labels. For example,

namespace app\models;

use yii\base\Model;

class ContactForm extends Model

{

public $name;

public $email;

public $subject;

public $body;

public function attributeLabels()

{

return [

'name' => 'Your name',

'email' => 'Your email address',

'subject' => 'Subject',

'body' => 'Content',

];

}

}

78 CHAPTER 3. APPLICATION STRUCTURE

For applications supporting multiple languages, you may want to translate
attribute labels. This can be done in the yii\base\Model::attributeLabels()
method as well, like the following:

public function attributeLabels()

{

return [

'name' => \Yii::t('app', 'Your name'),

'email' => \Yii::t('app', 'Your email address'),

'subject' => \Yii::t('app', 'Subject'),

'body' => \Yii::t('app', 'Content'),

];

}

You may even conditionally de�ne attribute labels. For example, based on
the scenario the model is being used in, you may return di�erent labels for
the same attribute.

Info: Strictly speaking, attribute labels are part of views. But
declaring labels in models is often very convenient and can result
in very clean and reusable code.

3.6.2 Scenarios

A model may be used in di�erent scenarios. For example, a User model
may be used to collect user login inputs, but it may also be used for the
user registration purpose. In di�erent scenarios, a model may use di�erent
business rules and logic. For example, the email attribute may be required
during user registration, but not so during user login.

A model uses the yii\base\Model::scenario property to keep track of
the scenario it is being used in. By default, a model supports only a single
scenario named default. The following code shows two ways of setting the
scenario of a model:

// scenario is set as a property

$model = new User;

$model->scenario = User::SCENARIO_LOGIN;

// scenario is set through configuration

$model = new User(['scenario' => User::SCENARIO_LOGIN]);

By default, the scenarios supported by a model are determined by the valid-
ation rules declared in the model. However, you can customize this behavior
by overriding the yii\base\Model::scenarios() method, like the follow-
ing:

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord

3.6. MODELS 79

{

const SCENARIO_LOGIN = 'login';

const SCENARIO_REGISTER = 'register';

public function scenarios()

{

return [

self::SCENARIO_LOGIN => ['username', 'password'],

self::SCENARIO_REGISTER => ['username', 'email', 'password'],

];

}

}

Info: In the above and following examples, the model classes
are extending from yii\db\ActiveRecord because the usage of
multiple scenarios usually happens to Active Record classes.

The scenarios() method returns an array whose keys are the scenario names
and values the corresponding active attributes. An active attribute can be
massively assigned and is subject to validation. In the above example, the
username and password attributes are active in the login scenario; while in the
register scenario, email is also active besides username and password.

The default implementation of scenarios() will return all scenarios found
in the validation rule declaration method yii\base\Model::rules(). When
overriding scenarios(), if you want to introduce new scenarios in addition to
the default ones, you may write code like the following:

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord

{

const SCENARIO_LOGIN = 'login';

const SCENARIO_REGISTER = 'register';

public function scenarios()

{

$scenarios = parent::scenarios();

$scenarios[self::SCENARIO_LOGIN] = ['username', 'password'];

$scenarios[self::SCENARIO_REGISTER] = ['username', 'email', '

password'];

return $scenarios;

}

}

The scenario feature is primarily used by validation and massive attribute
assignment. You can, however, use it for other purposes. For example, you
may declare attribute labels di�erently based on the current scenario.

80 CHAPTER 3. APPLICATION STRUCTURE

3.6.3 Validation Rules

When the data for a model is received from end users, it should be validated
to make sure it satis�es certain rules (called validation rules, also known
as business rules). For example, given a ContactForm model, you may want
to make sure all attributes are not empty and the email attribute contains
a valid email address. If the values for some attributes do not satisfy the
corresponding business rules, appropriate error messages should be displayed
to help the user to �x the errors.

You may call yii\base\Model::validate() to validate the received
data. The method will use the validation rules declared in yii\base\Model

::rules() to validate every relevant attribute. If no error is found, it will
return true. Otherwise, it will keep the errors in the yii\base\Model::

errors property and return false. For example,

$model = new \app\models\ContactForm;

// populate model attributes with user inputs

$model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {

// all inputs are valid

} else {

// validation failed: $errors is an array containing error messages

$errors = $model->errors;

}

To declare validation rules associated with a model, override the yii\base

\Model::rules() method by returning the rules that the model attributes
should satisfy. The following example shows the validation rules declared for
the ContactForm model:

public function rules()

{

return [

// the name, email, subject and body attributes are required

[['name', 'email', 'subject', 'body'], 'required'],

// the email attribute should be a valid email address

['email', 'email'],

];

}

A rule can be used to validate one or multiple attributes, and an attribute
may be validated by one or multiple rules. Please refer to the Validating
Input section for more details on how to declare validation rules.

Sometimes, you may want a rule to be applied only in certain scenarios.
To do so, you can specify the on property of a rule, like the following:

public function rules()

{

return [

3.6. MODELS 81

// username, email and password are all required in "register"

scenario

[['username', 'email', 'password'], 'required', 'on' => self::

SCENARIO_REGISTER],

// username and password are required in "login" scenario

[['username', 'password'], 'required', 'on' => self::SCENARIO_LOGIN

],

];

}

If you do not specify the on property, the rule would be applied in all scen-
arios. A rule is called an active rule if it can be applied in the current yii
\base\Model::scenario.

An attribute will be validated if and only if it is an active attribute
declared in scenarios() and is associated with one or multiple active rules
declared in rules().

3.6.4 Massive Assignment

Massive assignment is a convenient way of populating a model with user
inputs using a single line of code. It populates the attributes of a model
by assigning the input data directly to the yii\base\Model::$attributes

property. The following two pieces of code are equivalent, both trying to as-
sign the form data submitted by end users to the attributes of the ContactForm

model. Clearly, the former, which uses massive assignment, is much cleaner
and less error prone than the latter:

$model = new \app\models\ContactForm;

$model->attributes = \Yii::$app->request->post('ContactForm');

$model = new \app\models\ContactForm;

$data = \Yii::$app->request->post('ContactForm', []);

$model->name = isset($data['name']) ? $data['name'] : null;

$model->email = isset($data['email']) ? $data['email'] : null;

$model->subject = isset($data['subject']) ? $data['subject'] : null;

$model->body = isset($data['body']) ? $data['body'] : null;

Safe Attributes

Massive assignment only applies to the so-called safe attributes which are
the attributes listed in yii\base\Model::scenarios() for the current yii
\base\Model::scenario of a model. For example, if the User model has the
following scenario declaration, then when the current scenario is login, only
the username and password can be massively assigned. Any other attributes
will be kept untouched.

public function scenarios()

{

return [

82 CHAPTER 3. APPLICATION STRUCTURE

self::SCENARIO_LOGIN => ['username', 'password'],

self::SCENARIO_REGISTER => ['username', 'email', 'password'],

];

}

Info: The reason that massive assignment only applies to safe
attributes is because you want to control which attributes can be
modi�ed by end user data. For example, if the User model has
a permission attribute which determines the permission assigned
to the user, you would like this attribute to be modi�able by
administrators through a backend interface only.

Because the default implementation of yii\base\Model::scenarios() will
return all scenarios and attributes found in yii\base\Model::rules(), if
you do not override this method, it means an attribute is safe as long as it
appears in one of the active validation rules.

For this reason, a special validator aliased safe is provided so that you can
declare an attribute to be safe without actually validating it. For example,
the following rules declare that both title and description are safe attributes.

public function rules()

{

return [

[['title', 'description'], 'safe'],

];

}

Unsafe Attributes

As described above, the yii\base\Model::scenarios() method serves for
two purposes: determining which attributes should be validated, and de-
termining which attributes are safe. In some rare cases, you may want to
validate an attribute but do not want to mark it safe. You can do so by
pre�xing an exclamation mark ! to the attribute name when declaring it in
scenarios(), like the secret attribute in the following:

public function scenarios()

{

return [

self::SCENARIO_LOGIN => ['username', 'password', '!secret'],

];

}

When the model is in the login scenario, all three attributes will be validated.
However, only the username and password attributes can be massively assigned.
To assign an input value to the secret attribute, you have to do it explicitly
as follows,

$model->secret = $secret;

3.6. MODELS 83

The same can be done in rules() method:

public function rules()

{

return [

[['username', 'password', '!secret'], 'required', 'on' => 'login']

];

}

In this case attributes username, password and secret are required, but secret

must be assigned explicitly.

3.6.5 Data Exporting

Models often need to be exported in di�erent formats. For example, you
may want to convert a collection of models into JSON or Excel format. The
exporting process can be broken down into two independent steps:

• models are converted into arrays;
• the arrays are converted into target formats.

You may just focus on the �rst step, because the second step can be achieved
by generic data formatters, such as yii\web\JsonResponseFormatter.

The simplest way of converting a model into an array is to use the yii

\base\Model::$attributes property. For example,

$post = \app\models\Post::findOne(100);

$array = $post->attributes;

By default, the yii\base\Model::$attributes property will return the val-
ues of all attributes declared in yii\base\Model::attributes().

A more �exible and powerful way of converting a model into an array is
to use the yii\base\Model::toArray() method. Its default behavior is the
same as that of yii\base\Model::$attributes. However, it allows you to
choose which data items, called �elds, to be put in the resulting array and
how they should be formatted. In fact, it is the default way of exporting
models in RESTful Web service development, as described in the Response
Formatting.

Fields

A �eld is simply a named element in the array that is obtained by calling
the yii\base\Model::toArray() method of a model.

By default, �eld names are equivalent to attribute names. However, you
can change this behavior by overriding the yii\base\Model::fields() an-
d/or yii\base\Model::extraFields() methods. Both methods should re-
turn a list of �eld de�nitions. The �elds de�ned by fields() are default �elds,
meaning that toArray() will return these �elds by default. The extraFields()

method de�nes additionally available �elds which can also be returned by

84 CHAPTER 3. APPLICATION STRUCTURE

toArray() as long as you specify them via the $expand parameter. For ex-
ample, the following code will return all �elds de�ned in fields() and the
prettyName and fullAddress �elds if they are de�ned in extraFields().

$array = $model->toArray([], ['prettyName', 'fullAddress']);

You can override fields() to add, remove, rename or rede�ne �elds. The
return value of fields() should be an array. The array keys are the �eld
names, and the array values are the corresponding �eld de�nitions which
can be either property/attribute names or anonymous functions returning
the corresponding �eld values. In the special case when a �eld name is the
same as its de�ning attribute name, you can omit the array key. For example,

// explicitly list every field, best used when you want to make sure the

changes

// in your DB table or model attributes do not cause your field changes (to

keep API backward compatibility).

public function fields()

{

return [

// field name is the same as the attribute name

'id',

// field name is "email", the corresponding attribute name is "

email_address"

'email' => 'email_address',

// field name is "name", its value is defined by a PHP callback

'name' => function () {

return $this->first_name . ' ' . $this->last_name;

},

];

}

// filter out some fields, best used when you want to inherit the parent

implementation

// and blacklist some sensitive fields.

public function fields()

{

$fields = parent::fields();

// remove fields that contain sensitive information

unset($fields['auth_key'], $fields['password_hash'], $fields['

password_reset_token']);

return $fields;

}

Warning: Because by default all attributes of a model will be
included in the exported array, you should examine your data
to make sure they do not contain sensitive information. If there
is such information, you should override fields() to �lter them

3.6. MODELS 85

out. In the above example, we choose to �lter out auth_key,
password_hash and password_reset_token.

3.6.6 Best Practices

Models are the central places to represent business data, rules and logic.
They often need to be reused in di�erent places. In a well-designed applica-
tion, models are usually much fatter than controllers.

In summary, models

• may contain attributes to represent business data;
• may contain validation rules to ensure the data validity and integrity;
• may contain methods implementing business logic;
• should NOT directly access request, session, or any other environ-
mental data. These data should be injected by controllers into models;

• should avoid embedding HTML or other presentational code - this is
better done in views;

• avoid having too many scenarios in a single model.

You may usually consider the last recommendation above when you are de-
veloping large complex systems. In these systems, models could be very fat
because they are used in many places and may thus contain many sets of
rules and business logic. This often ends up in a nightmare in maintaining
the model code because a single touch of the code could a�ect several di�er-
ent places. To make the model code more maintainable, you may take the
following strategy:

• De�ne a set of base model classes that are shared by di�erent applica-
tions or modules. These model classes should contain minimal sets of
rules and logic that are common among all their usages.

• In each application or module that uses a model, de�ne a concrete
model class by extending from the corresponding base model class.
The concrete model classes should contain rules and logic that are
speci�c for that application or module.

For example, in the Advanced Project Template12, you may de�ne a base
model class common\models\Post. Then for the front end application, you
de�ne and use a concrete model class frontend\models\Post which extends
from common\models\Post. And similarly for the back end application, you
de�ne backend\models\Post. With this strategy, you will be sure that the code
in frontend\models\Post is only speci�c to the front end application, and if
you make any change to it, you do not need to worry if the change may
break the back end application.

12https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/

README.md

https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md

86 CHAPTER 3. APPLICATION STRUCTURE

3.7 Views

Views are part of the MVC13 architecture. They are code responsible for
presenting data to end users. In a Web application, views are usually created
in terms of view templates which are PHP script �les containing mainly
HTML code and presentational PHP code. They are managed by the yii

\web\View application component which provides commonly used methods
to facilitate view composition and rendering. For simplicity, we often call
view templates or view template �les as views.

3.7.1 Creating Views

As aforementioned, a view is simply a PHP script mixed with HTML and
PHP code. The following is the view that presents a login form. As you can
see, PHP code is used to generate the dynamic content, such as the page title
and the form, while HTML code organizes them into a presentable HTML
page.

<?php

use yii\helpers\Html;

use yii\widgets\ActiveForm;

/* @var $this yii\web\View */

/* @var $form yii\widgets\ActiveForm */

/* @var $model app\models\LoginForm */

$this->title = 'Login';

?>

<h1><?= Html::encode($this->title) ?></h1>

<p>Please fill out the following fields to login:</p>

<?php $form = ActiveForm::begin(); ?>

<?= $form->field($model, 'username') ?>

<?= $form->field($model, 'password')->passwordInput() ?>

<?= Html::submitButton('Login') ?>

<?php ActiveForm::end(); ?>

Within a view, you can access $this which refers to the yii\web\View man-
aging and rendering this view template.

Besides $this, there may be other prede�ned variables in a view, such
as $model in the above example. These variables represent the data that are
pushed into the view by controllers or other objects which trigger the view
rendering.

Tip: The prede�ned variables are listed in a comment block at
beginning of a view so that they can be recognized by IDEs. It
is also a good way of documenting your views.

13http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

3.7. VIEWS 87

Security

When creating views that generate HTML pages, it is important that you
encode and/or �lter the data coming from end users before presenting them.
Otherwise, your application may be subject to cross-site scripting14 attacks.

To display a plain text, encode it �rst by calling yii\helpers\Html::

encode(). For example, the following code encodes the user name before
displaying it:

<?php

use yii\helpers\Html;

?>

<div class="username">

<?= Html::encode($user->name) ?>

</div>

To display HTML content, use yii\helpers\HtmlPurifier to �lter the con-
tent �rst. For example, the following code �lters the post content before
displaying it:

<?php

use yii\helpers\HtmlPurifier;

?>

<div class="post">

<?= HtmlPurifier::process($post->text) ?>

</div>

Tip: While HTMLPuri�er does excellent job in making output
safe, it is not fast. You should consider caching the �ltering result
if your application requires high performance.

Organizing Views

Like controllers and models, there are conventions to organize views.
• For views rendered by a controller, they should be put under the dir-
ectory @app/views/ControllerID by default, where ControllerID refers to
the controller ID. For example, if the controller class is PostController,
the directory would be @app/views/post; if it is PostCommentController,
the directory would be @app/views/post-comment. In case the controller
belongs to a module, the directory would be views/ControllerID under
the yii\base\Module::basePath.

• For views rendered in a widget, they should be put under the WidgetPath

/views directory by default, where WidgetPath stands for the directory
containing the widget class �le.

• For views rendered by other objects, it is recommended that you follow
the similar convention as that for widgets.

14http://en.wikipedia.org/wiki/Cross-site_scripting

http://en.wikipedia.org/wiki/Cross-site_scripting

88 CHAPTER 3. APPLICATION STRUCTURE

You may customize these default view directories by overriding the yii\base
\ViewContextInterface::getViewPath() method of controllers or widgets.

3.7.2 Rendering Views

You can render views in controllers, widgets, or any other places by calling
view rendering methods. These methods share a similar signature shown as
follows,

/**

* @param string $view view name or file path, depending on the actual

rendering method

* @param array $params the data to be passed to the view

* @return string rendering result

*/

methodName($view, $params = [])

Rendering in Controllers

Within controllers, you may call the following controller methods to render
views:

• yii\base\Controller::render(): renders a named view and applies
a layout to the rendering result.

• yii\base\Controller::renderPartial(): renders a named view without
any layout.

• yii\web\Controller::renderAjax(): renders a named view without
any layout, and injects all registered JS/CSS scripts and �les. It is
usually used in response to AJAX Web requests.

• yii\base\Controller::renderFile(): renders a view speci�ed in
terms of a view �le path or alias.

• yii\base\Controller::renderContent(): renders a static string by
embedding it into the currently applicable layout. This method is
available since version 2.0.1.

For example,

namespace app\controllers;

use Yii;

use app\models\Post;

use yii\web\Controller;

use yii\web\NotFoundHttpException;

class PostController extends Controller

{

public function actionView($id)

{

$model = Post::findOne($id);

if ($model === null) {

throw new NotFoundHttpException;

3.7. VIEWS 89

}

// renders a view named "view" and applies a layout to it

return $this->render('view', [

'model' => $model,

]);

}

}

Rendering in Widgets

Within widgets, you may call the following widget methods to render views.
• yii\base\Widget::render(): renders a named view.
• yii\base\Widget::renderFile(): renders a view speci�ed in terms
of a view �le path or alias.

For example,

namespace app\components;

use yii\base\Widget;

use yii\helpers\Html;

class ListWidget extends Widget

{

public $items = [];

public function run()

{

// renders a view named "list"

return $this->render('list', [

'items' => $this->items,

]);

}

}

Rendering in Views

You can render a view within another view by calling one of the following
methods provided by the yii\base\View:

• yii\base\View::render(): renders a named view.
• yii\web\View::renderAjax(): renders a named view and injects all
registered JS/CSS scripts and �les. It is usually used in response to
AJAX Web requests.

• yii\base\View::renderFile(): renders a view speci�ed in terms of
a view �le path or alias.

For example, the following code in a view renders the _overview.php view
�le which is in the same directory as the view being currently rendered.
Remember that $this in a view refers to the yii\base\View component:

<?= $this->render('_overview') ?>

90 CHAPTER 3. APPLICATION STRUCTURE

Rendering in Other Places

In any place, you can get access to the yii\base\View application com-
ponent by the expression Yii::$app->view and then call its aforementioned
methods to render a view. For example,

// displays the view file "@app/views/site/license.php"

echo \Yii::$app->view->renderFile('@app/views/site/license.php');

Named Views

When you render a view, you can specify the view using either a view name
or a view �le path/alias. In most cases, you would use the former because it
is more concise and �exible. We call views speci�ed using names as named

views.

A view name is resolved into the corresponding view �le path according
to the following rules:

• A view name may omit the �le extension name. In this case, .php will be
used as the extension. For example, the view name about corresponds
to the �le name about.php.

• If the view name starts with double slashes //, the corresponding view
�le path would be @app/views/ViewName. That is, the view is looked for
under the yii\base\Application::viewPath. For example, //site/

about will be resolved into @app/views/site/about.php.
• If the view name starts with a single slash /, the view �le path is formed
by pre�xing the view name with the yii\base\Module::viewPath of
the currently active module. If there is no active module, @app/views/
ViewName will be used. For example, /user/create will be resolved into
@app/modules/user/views/user/create.php, if the currently active module
is user. If there is no active module, the view �le path would be @app/

views/user/create.php.
• If the view is rendered with a yii\base\View::context and the con-
text implements yii\base\ViewContextInterface, the view �le path
is formed by pre�xing the yii\base\ViewContextInterface::getViewPath()
of the context to the view name. This mainly applies to the views
rendered within controllers and widgets. For example, about will be
resolved into @app/views/site/about.php if the context is the controller
SiteController.

• If a view is rendered within another view, the directory containing the
other view �le will be pre�xed to the new view name to form the actual
view �le path. For example, item will be resolved into @app/views/post

/item.php if it is being rendered in the view @app/views/post/index.php.

According to the above rules, calling $this->render('view') in a controller app
\controllers\PostController will actually render the view �le @app/views/post/

view.php, while calling $this->render('_overview') in that view will render the

3.7. VIEWS 91

view �le @app/views/post/_overview.php.

Accessing Data in Views

There are two approaches to access data within a view: push and pull.

By passing the data as the second parameter to the view rendering meth-
ods, you are using the push approach. The data should be represented as
an array of name-value pairs. When the view is being rendered, the PHP
extract() function will be called on this array so that the array is extracted
into variables in the view. For example, the following view rendering code in
a controller will push two variables to the report view: $foo = 1 and $bar = 2.

echo $this->render('report', [

'foo' => 1,

'bar' => 2,

]);

The pull approach actively retrieves data from the yii\base\View or other
objects accessible in views (e.g. Yii::$app). Using the code below as an
example, within the view you can get the controller object by the expression
$this->context. And as a result, it is possible for you to access any properties
or methods of the controller in the report view, such as the controller ID
shown in the following:

The controller ID is: <?= $this->context->id ?>

The push approach is usually the preferred way of accessing data in views,
because it makes views less dependent on context objects. Its drawback is
that you need to manually build the data array all the time, which could
become tedious and error prone if a view is shared and rendered in di�erent
places.

Sharing Data among Views

The yii\base\View provides the yii\base\View::params property that
you can use to share data among views.

For example, in an about view, you can have the following code which
speci�es the current segment of the breadcrumbs.

$this->params['breadcrumbs'][] = 'About Us';

Then, in the layout �le, which is also a view, you can display the breadcrumbs
using the data passed along yii\base\View::params:

<?= yii\widgets\Breadcrumbs::widget([

'links' => isset($this->params['breadcrumbs']) ? $this->params['

breadcrumbs'] : [],

]) ?>

92 CHAPTER 3. APPLICATION STRUCTURE

3.7.3 Layouts

Layouts are a special type of views that represent the common parts of
multiple views. For example, the pages for most Web applications share the
same page header and footer. While you can repeat the same page header
and footer in every view, a better way is to do this once in a layout and
embed the rendering result of a content view at an appropriate place in the
layout.

Creating Layouts

Because layouts are also views, they can be created in the similar way as
normal views. By default, layouts are stored in the directory @app/views/

layouts. For layouts used within a module, they should be stored in the
views/layouts directory under the yii\base\Module::basePath. You may
customize the default layout directory by con�guring the yii\base\Module
::layoutPath property of the application or modules.

The following example shows how a layout looks like. Note that for
illustrative purpose, we have greatly simpli�ed the code in the layout. In
practice, you may want to add more content to it, such as head tags, main
menu, etc.

<?php

use yii\helpers\Html;

/* @var $this yii\web\View */

/* @var $content string */

?>

<?php $this->beginPage() ?>

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8"/>

<?= Html::csrfMetaTags() ?>

<title><?= Html::encode($this->title) ?></title>

<?php $this->head() ?>

</head>

<body>

<?php $this->beginBody() ?>

<header>My Company</header>

<?= $content ?>

<footer>© 2014 by My Company</footer>

<?php $this->endBody() ?>

</body>

</html>

<?php $this->endPage() ?>

As you can see, the layout generates the HTML tags that are common to
all pages. Within the <body> section, the layout echoes the $content variable
which represents the rendering result of content views and is pushed into the

3.7. VIEWS 93

layout when yii\base\Controller::render() is called.

Most layouts should call the following methods like shown in the above
code. These methods mainly trigger events about the rendering process so
that scripts and tags registered in other places can be properly injected into
the places where these methods are called.

• yii\base\View::beginPage(): This method should be called at the
very beginning of the layout. It triggers the yii\base\View::EVENT_BEGIN_PAGE
event which indicates the beginning of a page.

• yii\base\View::endPage(): This method should be called at the end
of the layout. It triggers the yii\base\View::EVENT_END_PAGE event
which indicates the end of a page.

• yii\web\View::head(): This method should be called within the <

head> section of an HTML page. It generates a placeholder which will
be replaced with the registered head HTML code (e.g. link tags, meta
tags) when a page �nishes rendering.

• yii\web\View::beginBody(): This method should be called at the be-
ginning of the <body> section. It triggers the yii\web\View::EVENT_BEGIN_BODY
event and generates a placeholder which will be replaced by the re-
gistered HTML code (e.g. JavaScript) targeted at the body begin
position.

• yii\web\View::endBody(): This method should be called at the end
of the <body> section. It triggers the yii\web\View::EVENT_END_BODY
event and generates a placeholder which will be replaced by the re-
gistered HTML code (e.g. JavaScript) targeted at the body end posi-
tion.

Accessing Data in Layouts

Within a layout, you have access to two prede�ned variables: $this and
$content. The former refers to the yii\base\View component, like in nor-
mal views, while the latter contains the rendering result of a content view
which is rendered by calling the yii\base\Controller::render() method
in controllers.

If you want to access other data in layouts, you have to use the pull
method as described in the Accessing Data in Views subsection. If you want
to pass data from a content view to a layout, you may use the method
described in the Sharing Data among Views subsection.

Using Layouts

As described in the Rendering in Controllers subsection, when you render a
view by calling the yii\base\Controller::render() method in a control-
ler, a layout will be applied to the rendering result. By default, the layout
@app/views/layouts/main.php will be used.

94 CHAPTER 3. APPLICATION STRUCTURE

You may use a di�erent layout by con�guring either yii\base\Application
::layout or yii\base\Controller::layout. The former governs the lay-
out used by all controllers, while the latter overrides the former for individual
controllers. For example, the following code makes the post controller to use
@app/views/layouts/post.php as the layout when rendering its views. Other
controllers, assuming their layout property is untouched, will still use the
default @app/views/layouts/main.php as the layout.

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller

{

public $layout = 'post';

// ...

}

For controllers belonging to a module, you may also con�gure the module's
yii\base\Module::layout property to use a particular layout for these con-
trollers.

Because the layout property may be con�gured at di�erent levels (control-
lers, modules, application), behind the scene Yii takes two steps to determine
what is the actual layout �le being used for a particular controller.

In the �rst step, it determines the layout value and the context module:
• If the yii\base\Controller::layout property of the controller is not

null, use it as the layout value and the yii\base\Controller::module
of the controller as the context module.

• If the yii\base\Controller::layout property of the controller is null
, search through all ancestor modules (including the application itself)
of the controller and �nd the �rst module whose yii\base\Module

::layout property is not null. Use that module and its yii\base

\Module::layout value as the context module and the chosen layout
value. If such a module cannot be found, it means no layout will be
applied.

In the second step, it determines the actual layout �le according to the layout
value and the context module determined in the �rst step. The layout value
can be:

• a path alias (e.g. @app/views/layouts/main).
• an absolute path (e.g. /main): the layout value starts with a slash. The
actual layout �le will be looked for under the application's yii\base
\Application::layoutPath which defaults to @app/views/layouts.

• a relative path (e.g. main): the actual layout �le will be looked for under
the context module's yii\base\Module::layoutPath which defaults
to the views/layouts directory under the yii\base\Module::basePath.

• the boolean value false: no layout will be applied.

3.7. VIEWS 95

If the layout value does not contain a �le extension, it will use the default
one .php.

Nested Layouts

Sometimes you may want to nest one layout in another. For example, in
di�erent sections of a Web site, you want to use di�erent layouts, while
all these layouts share the same basic layout that generates the overall
HTML5 page structure. You can achieve this goal by calling yii\base\View

::beginContent() and yii\base\View::endContent() in the child layouts
like the following:

<?php $this->beginContent('@app/views/layouts/base.php'); ?>

...child layout content here...

<?php $this->endContent(); ?>

As shown above, the child layout content should be enclosed within yii

\base\View::beginContent() and yii\base\View::endContent(). The
parameter passed to yii\base\View::beginContent() speci�es what is the
parent layout. It can be either a layout �le or alias.

Using the above approach, you can nest layouts in more than one levels.

Using Blocks

Blocks allow you to specify the view content in one place while displaying
it in another. They are often used together with layouts. For example, you
can de�ne a block in a content view and display it in the layout.

You call yii\base\View::beginBlock() and yii\base\View::endBlock()
to de�ne a block. The block can then be accessed via $view->blocks[$blockID

], where $blockID stands for a unique ID that you assign to the block when
de�ning it.

The following example shows how you can use blocks to customize speci�c
parts of a layout in a content view.

First, in a content view, de�ne one or multiple blocks:

...

<?php $this->beginBlock('block1'); ?>

...content of block1...

<?php $this->endBlock(); ?>

...

<?php $this->beginBlock('block3'); ?>

...content of block3...

96 CHAPTER 3. APPLICATION STRUCTURE

<?php $this->endBlock(); ?>

Then, in the layout view, render the blocks if they are available, or display
some default content if a block is not de�ned.

...

<?php if (isset($this->blocks['block1'])): ?>

<?= $this->blocks['block1'] ?>

<?php else: ?>

... default content for block1 ...

<?php endif; ?>

...

<?php if (isset($this->blocks['block2'])): ?>

<?= $this->blocks['block2'] ?>

<?php else: ?>

... default content for block2 ...

<?php endif; ?>

...

<?php if (isset($this->blocks['block3'])): ?>

<?= $this->blocks['block3'] ?>

<?php else: ?>

... default content for block3 ...

<?php endif; ?>

...

3.7.4 Using View Components

yii\base\View provides many view-related features. While you can get view
components by creating individual instances of yii\base\View or its child
class, in most cases you will mainly use the view application component. You
can con�gure this component in application con�gurations like the following:

[

// ...

'components' => [

'view' => [

'class' => 'app\components\View',

],

// ...

],

]

View components provide the following useful view-related features, each
described in more details in a separate section:

• theming: allows you to develop and change the theme for your Web
site.

• fragment caching: allows you to cache a fragment within a Web page.

3.7. VIEWS 97

• client script handling: supports CSS and JavaScript registration and
rendering.

• asset bundle handling: supports registering and rendering of asset
bundles.

• alternative template engines: allows you to use other template engines,
such as Twig15, Smarty16.

You may also frequently use the following minor yet useful features when
you are developing Web pages.

Setting Page Titles

Every Web page should have a title. Normally the title tag is being displayed
in a layout. However, in practice the title is often determined in content
views rather than layouts. To solve this problem, yii\web\View provides
the yii\web\View::title property for you to pass the title information
from content views to layouts.

To make use of this feature, in each content view, you can set the page
title like the following:

<?php

$this->title = 'My page title';

?>

Then in the layout, make sure you have the following code in the <head>

section:

<title><?= Html::encode($this->title) ?></title>

Registering Meta Tags

Web pages usually need to generate various meta tags needed by di�erent
parties. Like page titles, meta tags appear in the <head> section and are
usually generated in layouts.

If you want to specify what meta tags to generate in content views,
you can call yii\web\View::registerMetaTag() in a content view, like the
following:

<?php

$this->registerMetaTag(['name' => 'keywords', 'content' => 'yii, framework,

php']);

?>

The above code will register a �keywords� meta tag with the view component.
The registered meta tag is rendered after the layout �nishes rendering. The
following HTML code will be generated and inserted at the place where you
call yii\web\View::head() in the layout:

15http://twig.sensiolabs.org/
16http://www.smarty.net/

http://twig.sensiolabs.org/
http://www.smarty.net/

98 CHAPTER 3. APPLICATION STRUCTURE

<meta name="keywords" content="yii, framework, php">

Note that if you call yii\web\View::registerMetaTag() multiple times, it
will register multiple meta tags, regardless whether the meta tags are the
same or not.

To make sure there is only a single instance of a meta tag type, you can
specify a key as a second parameter when calling the method. For example,
the following code registers two �description� meta tags. However, only the
second one will be rendered.

$this->registerMetaTag(['name' => 'description', 'content' => 'This is my

cool website made with Yii!'], 'description');

$this->registerMetaTag(['name' => 'description', 'content' => 'This website

is about funny raccoons.'], 'description');

Registering Link Tags

Like meta tags, link tags are useful in many cases, such as customizing
favicon, pointing to RSS feed or delegating OpenID to another server. You
can work with link tags in the similar way as meta tags by using yii\web

\View::registerLinkTag(). For example, in a content view, you can re-
gister a link tag like follows,

$this->registerLinkTag([

'title' => 'Live News for Yii',

'rel' => 'alternate',

'type' => 'application/rss+xml',

'href' => 'http://www.yiiframework.com/rss.xml/',

]);

The code above will result in

<link title="Live News for Yii" rel="alternate" type="application/rss+xml"

href="http://www.yiiframework.com/rss.xml/">

Similar as yii\web\View::registerMetaTag(), you can specify a key when
calling yii\web\View::registerLinkTag() to avoid generating repeated
link tags.

3.7.5 View Events

yii\base\View trigger several events during the view rendering process. You
may respond to these events to inject content into views or process the
rendering results before they are sent to end users.

• yii\base\View::EVENT_BEFORE_RENDER: triggered at the beginning of
rendering a �le in a controller. Handlers of this event may set yii\base
\ViewEvent::isValid to be false to cancel the rendering process.

• yii\base\View::EVENT_AFTER_RENDER: triggered after rendering a �le
by the call of yii\base\View::afterRender(). Handlers of this event

3.7. VIEWS 99

may obtain the rendering result through yii\base\ViewEvent::output
and may modify this property to change the rendering result.

• yii\base\View::EVENT_BEGIN_PAGE: triggered by the call of yii\base
\View::beginPage() in layouts.

• yii\base\View::EVENT_END_PAGE: triggered by the call of yii\base
\View::endPage() in layouts.

• yii\web\View::EVENT_BEGIN_BODY: triggered by the call of yii\web
\View::beginBody() in layouts.

• yii\web\View::EVENT_END_BODY: triggered by the call of yii\web\View
::endBody() in layouts.

For example, the following code injects the current date at the end of the
page body:

\Yii::$app->view->on(View::EVENT_END_BODY, function () {

echo date('Y-m-d');

});

3.7.6 Rendering Static Pages

Static pages refer to those Web pages whose main content are mostly static
without the need of accessing dynamic data pushed from controllers.

You can output static pages by putting their code in the view, and then
using the code like the following in a controller:

public function actionAbout()

{

return $this->render('about');

}

If a Web site contains many static pages, it would be very tedious repeating
the similar code many times. To solve this problem, you may introduce a
standalone action called yii\web\ViewAction in a controller. For example,

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller

{

public function actions()

{

return [

'page' => [

'class' => 'yii\web\ViewAction',

],

];

}

}

Now if you create a view named about under the directory @app/views/site/

pages, you will be able to display this view by the following URL:

100 CHAPTER 3. APPLICATION STRUCTURE

http://localhost/index.php?r=site%2Fpage&view=about

The GET parameter view tells yii\web\ViewAction which view is requested.
The action will then look for this view under the directory @app/views/site/

pages. You may con�gure yii\web\ViewAction::viewPrefix to change the
directory for searching these views.

3.7.7 Best Practices

Views are responsible for presenting models in the format that end users
desire. In general, views

• should mainly contain presentational code, such as HTML, and simple
PHP code to traverse, format and render data.

• should not contain code that performs DB queries. Such code should
be done in models.

• should avoid direct access to request data, such as $_GET, $_POST. This
belongs to controllers. If request data is needed, they should be pushed
into views by controllers.

• may read model properties, but should not modify them.

To make views more manageable, avoid creating views that are too complex
or contain too much redundant code. You may use the following techniques
to achieve this goal:

• use layouts to represent common presentational sections (e.g. page
header, footer).

• divide a complicated view into several smaller ones. The smaller views
can be rendered and assembled into a bigger one using the rendering
methods that we have described.

• create and use widgets as building blocks of views.
• create and use helper classes to transform and format data in views.

3.8 Modules

Modules are self-contained software units that consist of models, views, con-
trollers, and other supporting components. End users can access the con-
trollers of a module when it is installed in application. For these reasons,
modules are often viewed as mini-applications. Modules di�er from applic-
ations in that modules cannot be deployed alone and must reside within
applications.

3.8.1 Creating Modules

A module is organized as a directory which is called the yii\base\Module

::basePath of the module. Within the directory, there are sub-directories,
such as controllers, models, views, which hold controllers, models, views, and

3.8. MODULES 101

other code, just like in an application. The following example shows the
content within a module:

forum/

Module.php the module class file

controllers/ containing controller class files

DefaultController.php the default controller class file

models/ containing model class files

views/ containing controller view and layout files

layouts/ containing layout view files

default/ containing view files for DefaultController

index.php the index view file

Module Classes

Each module should have a unique module class which extends from yii

\base\Module. The class should be located directly under the module's yii
\base\Module::basePath and should be autoloadable. When a module is
being accessed, a single instance of the corresponding module class will be
created. Like application instances, module instances are used to share data
and components for code within modules.

The following is an example how a module class may look like:

namespace app\modules\forum;

class Module extends \yii\base\Module

{

public function init()

{

parent::init();

$this->params['foo'] = 'bar';

// ... other initialization code ...

}

}

If the init() method contains a lot of code initializing the module's proper-
ties, you may also save them in terms of a con�guration and load it with the
following code in init():

public function init()

{

parent::init();

// initialize the module with the configuration loaded from config.php

\Yii::configure($this, require(__DIR__ . '/config.php'));

}

where the con�guration �le config.php may contain the following content,
similar to that in an application con�guration.

<?php

return [

'components' => [

102 CHAPTER 3. APPLICATION STRUCTURE

// list of component configurations

],

'params' => [

// list of parameters

],

];

Controllers in Modules

When creating controllers in a module, a convention is to put the control-
ler classes under the controllers sub-namespace of the namespace of the
module class. This also means the controller class �les should be put in
the controllers directory within the module's yii\base\Module::basePath.
For example, to create a post controller in the forum module shown in the
last subsection, you should declare the controller class like the following:

namespace app\modules\forum\controllers;

use yii\web\Controller;

class PostController extends Controller

{

// ...

}

You may customize the namespace of controller classes by con�guring the
yii\base\Module::controllerNamespace property. In case some of the
controllers are outside of this namespace, you may make them accessible
by con�guring the yii\base\Module::controllerMap property, similar to
what you do in an application.

Views in Modules

Views in a module should be put in the views directory within the module's
yii\base\Module::basePath. For views rendered by a controller in the
module, they should be put under the directory views/ControllerID, where
ControllerID refers to the controller ID. For example, if the controller class
is PostController, the directory would be views/post within the module's yii
\base\Module::basePath.

A module can specify a layout that is applied to the views rendered by
the module's controllers. The layout should be put in the views/layouts dir-
ectory by default, and you should con�gure the yii\base\Module::layout
property to point to the layout name. If you do not con�gure the layout

property, the application's layout will be used instead.

3.8. MODULES 103

Console commands in Modules

Your module may also declare commands, that will be available through the
Console mode.

In order for the command line utility to see your commands, you will need
to change the yii\base\Module::controllerNamespace property, when Yii
is executed in the console mode, and point it to your commands namespace.

One way to achieve that is to test the instance type of the Yii application
in the module's init() method:

public function init()

{

parent::init();

if (Yii::$app instanceof \yii\console\Application) {

$this->controllerNamespace = 'app\modules\forum\commands';

}

}

Your commands will then be available from the command line using the
following route:

yii <module_id>/<command>/<sub_command>

3.8.2 Using Modules

To use a module in an application, simply con�gure the application by listing
the module in the yii\base\Application::modules property of the applic-
ation. The following code in the application con�guration uses the forum

module:

[

'modules' => [

'forum' => [

'class' => 'app\modules\forum\Module',

// ... other configurations for the module ...

],

],

]

The yii\base\Application::modules property takes an array of module
con�gurations. Each array key represents amodule ID which uniquely identi-
�es the module among all modules in the application, and the corresponding
array value is a con�guration for creating the module.

Routes

Like accessing controllers in an application, routes are used to address con-
trollers in a module. A route for a controller within a module must begin
with the module ID followed by the controller ID and action ID. For ex-
ample, if an application uses a module named forum, then the route forum/

104 CHAPTER 3. APPLICATION STRUCTURE

post/index would represent the index action of the post controller in the mod-
ule. If the route only contains the module ID, then the yii\base\Module

::defaultRoute property, which defaults to default, will determine which
controller/action should be used. This means a route forum would represent
the default controller in the forum module.

Accessing Modules

Within a module, you may often need to get the instance of the module
class so that you can access the module ID, module parameters, module
components, etc. You can do so by using the following statement:

$module = MyModuleClass::getInstance();

where MyModuleClass refers to the name of the module class that you are
interested in. The getInstance() method will return the currently requested
instance of the module class. If the module is not requested, the method will
return null. Note that you do not want to manually create a new instance
of the module class because it will be di�erent from the one created by Yii
in response to a request.

Info: When developing a module, you should not assume the
module will use a �xed ID. This is because a module can be
associated with an arbitrary ID when used in an application or
within another module. In order to get the module ID, you should
use the above approach to get the module instance �rst, and then
get the ID via $module->id.

You may also access the instance of a module using the following approaches:

// get the child module whose ID is "forum"

$module = \Yii::$app->getModule('forum');

// get the module to which the currently requested controller belongs

$module = \Yii::$app->controller->module;

The �rst approach is only useful when you know the module ID, while the
second approach is best used when you know about the controllers being
requested.

Once you have the module instance, you can access parameters and com-
ponents registered with the module. For example,

$maxPostCount = $module->params['maxPostCount'];

Bootstrapping Modules

Some modules may need to be run for every request. The yii\debug\Module
module is such an example. To do so, list the IDs of such modules in the
yii\base\Application::bootstrap property of the application.

3.8. MODULES 105

For example, the following application con�guration makes sure the debug

module is always loaded:

[

'bootstrap' => [

'debug',

],

'modules' => [

'debug' => 'yii\debug\Module',

],

]

3.8.3 Nested Modules

Modules can be nested in unlimited levels. That is, a module can contain
another module which can contain yet another module. We call the former
parent module while the latter child module. Child modules must be declared
in the yii\base\Module::modules property of their parent modules. For
example,

namespace app\modules\forum;

class Module extends \yii\base\Module

{

public function init()

{

parent::init();

$this->modules = [

'admin' => [

// you should consider using a shorter namespace here!

'class' => 'app\modules\forum\modules\admin\Module',

],

];

}

}

For a controller within a nested module, its route should include the IDs of
all its ancestor modules. For example, the route forum/admin/dashboard/index

represents the index action of the dashboard controller in the admin module
which is a child module of the forum module.

Info: The yii\base\Module::getModule() method only re-
turns the child module directly belonging to its parent. The
yii\base\Application::loadedModules property keeps a list of
loaded modules, including both direct children and nested ones,
indexed by their class names.

106 CHAPTER 3. APPLICATION STRUCTURE

3.8.4 Best Practices

Modules are best used in large applications whose features can be divided
into several groups, each consisting of a set of closely related features. Each
such feature group can be developed as a module which is developed and
maintained by a speci�c developer or team.

Modules are also a good way of reusing code at the feature group level.
Some commonly used features, such as user management, comment manage-
ment, can all be developed in terms of modules so that they can be reused
easily in future projects.

3.9 Filters

Filters are objects that run before and/or after controller actions. For ex-
ample, an access control �lter may run before actions to ensure that they are
allowed to be accessed by particular end users; a content compression �lter
may run after actions to compress the response content before sending them
out to end users.

A �lter may consist of a pre-�lter (�ltering logic applied before actions)
and/or a post-�lter (logic applied after actions).

3.9.1 Using Filters

Filters are essentially a special kind of behaviors. Therefore, using �lters is
the same as using behaviors. You can declare �lters in a controller class by
overriding its yii\base\Controller::behaviors() method like the follow-
ing:

public function behaviors()

{

return [

[

'class' => 'yii\filters\HttpCache',

'only' => ['index', 'view'],

'lastModified' => function ($action, $params) {

$q = new \yii\db\Query();

return $q->from('user')->max('updated_at');

},

],

];

}

By default, �lters declared in a controller class will be applied to all actions
in that controller. You can, however, explicitly specify which actions the
�lter should be applied to by con�guring the yii\base\ActionFilter::

only property. In the above example, the HttpCache �lter only applies to the
index and view actions. You can also con�gure the yii\base\ActionFilter
::except property to blacklist some actions from being �ltered.

3.9. FILTERS 107

Besides controllers, you can also declare �lters in a module or applica-
tion. When you do so, the �lters will be applied to all controller actions
belonging to that module or application, unless you con�gure the �lters' yii
\base\ActionFilter::only and yii\base\ActionFilter::except proper-
ties like described above.

Note: When declaring �lters in modules or applications, you
should use routes instead of action IDs in the yii\base\ActionFilter
::only and yii\base\ActionFilter::except properties. This
is because action IDs alone cannot fully specify actions within
the scope of a module or application.

When multiple �lters are con�gured for a single action, they are applied
according to the rules described below:

• Pre-�ltering
� Apply �lters declared in the application in the order they are
listed in behaviors().

� Apply �lters declared in the module in the order they are listed
in behaviors().

� Apply �lters declared in the controller in the order they are listed
in behaviors().

� If any of the �lters cancel the action execution, the �lters (both
pre-�lters and post-�lters) after it will not be applied.

• Running the action if it passes the pre-�ltering.
• Post-�ltering

� Apply �lters declared in the controller in the reverse order they
are listed in behaviors().

� Apply �lters declared in the module in the reverse order they are
listed in behaviors().

� Apply �lters declared in the application in the reverse order they
are listed in behaviors().

3.9.2 Creating Filters

To create a new action �lter, extend from yii\base\ActionFilter and
override the yii\base\ActionFilter::beforeAction() and/or yii\base

\ActionFilter::afterAction() methods. The former will be executed be-
fore an action runs while the latter after an action runs. The return value of
yii\base\ActionFilter::beforeAction() determines whether an action
should be executed or not. If it is false, the �lters after this one will be
skipped and the action will not be executed.

The following example shows a �lter that logs the action execution time:

namespace app\components;

use Yii;

108 CHAPTER 3. APPLICATION STRUCTURE

use yii\base\ActionFilter;

class ActionTimeFilter extends ActionFilter

{

private $_startTime;

public function beforeAction($action)

{

$this->_startTime = microtime(true);

return parent::beforeAction($action);

}

public function afterAction($action, $result)

{

$time = microtime(true) - $this->_startTime;

Yii::trace("Action '{$action->uniqueId}' spent $time second.");

return parent::afterAction($action, $result);

}

}

3.9.3 Core Filters

Yii provides a set of commonly used �lters, found primarily under the yii\

filters namespace. In the following, we will brie�y introduce these �lters.

yii\filters\AccessControl

AccessControl provides simple access control based on a set of yii\filters
\AccessControl::rules. In particular, before an action is executed, Ac-
cessControl will examine the listed rules and �nd the �rst one that matches
the current context variables (such as user IP address, user login status, etc.)
The matching rule will dictate whether to allow or deny the execution of the
requested action. If no rule matches, the access will be denied.

The following example shows how to allow authenticated users to access
the create and update actions while denying all other users from accessing
these two actions.

use yii\filters\AccessControl;

public function behaviors()

{

return [

'access' => [

'class' => AccessControl::className(),

'only' => ['create', 'update'],

'rules' => [

// allow authenticated users

[

'allow' => true,

'roles' => ['@'],

],

3.9. FILTERS 109

// everything else is denied by default

],

],

];

}

For more details about access control in general, please refer to the Author-
ization section.

Authentication Method Filters

Authentication method �lters are used to authenticate a user using various
methods, such as HTTP Basic Auth17, OAuth 218. These �lter classes are
all under the yii\filters\auth namespace.

The following example shows how you can use yii\filters\auth\HttpBasicAuth
to authenticate a user using an access token based on HTTP Basic Auth
method. Note that in order for this to work, your yii\web\User::identityClass
must implement the yii\web\IdentityInterface::findIdentityByAccessToken()
method.

use yii\filters\auth\HttpBasicAuth;

public function behaviors()

{

return [

'basicAuth' => [

'class' => HttpBasicAuth::className(),

],

];

}

Authentication method �lters are commonly used in implementing RESTful
APIs. For more details, please refer to the RESTful Authentication section.

yii\filters\ContentNegotiator

ContentNegotiator supports response format negotiation and application
language negotiation. It will try to determine the response format and/or
language by examining GET parameters and Accept HTTP header.

In the following example, ContentNegotiator is con�gured to support
JSON and XML response formats, and English (United States) and German
languages.

use yii\filters\ContentNegotiator;

use yii\web\Response;

public function behaviors()

{

17http://en.wikipedia.org/wiki/Basic_access_authentication
18http://oauth.net/2/

http://en.wikipedia.org/wiki/Basic_access_authentication
http://oauth.net/2/

110 CHAPTER 3. APPLICATION STRUCTURE

return [

[

'class' => ContentNegotiator::className(),

'formats' => [

'application/json' => Response::FORMAT_JSON,

'application/xml' => Response::FORMAT_XML,

],

'languages' => [

'en-US',

'de',

],

],

];

}

Response formats and languages often need to be determined much earlier
during the application lifecycle. For this reason, ContentNegotiator is de-
signed in a way such that it can also be used as a bootstrapping component
besides being used as a �lter. For example, you may con�gure it in the
application con�guration like the following:

use yii\filters\ContentNegotiator;

use yii\web\Response;

[

'bootstrap' => [

[

'class' => ContentNegotiator::className(),

'formats' => [

'application/json' => Response::FORMAT_JSON,

'application/xml' => Response::FORMAT_XML,

],

'languages' => [

'en-US',

'de',

],

],

],

];

Info: In case the preferred content type and language cannot be
determined from a request, the �rst format and language listed
in formats and languages will be used.

yii\filters\HttpCache

HttpCache implements client-side caching by utilizing the Last-Modified and
Etag HTTP headers. For example,

use yii\filters\HttpCache;

public function behaviors()

3.9. FILTERS 111

{

return [

[

'class' => HttpCache::className(),

'only' => ['index'],

'lastModified' => function ($action, $params) {

$q = new \yii\db\Query();

return $q->from('user')->max('updated_at');

},

],

];

}

Please refer to the HTTP Caching section for more details about using Ht-
tpCache.

yii\filters\PageCache

PageCache implements server-side caching of whole pages. In the following
example, PageCache is applied to the index action to cache the whole page for
maximum 60 seconds or until the count of entries in the post table changes. It
also stores di�erent versions of the page depending on the chosen application
language.

use yii\filters\PageCache;

use yii\caching\DbDependency;

public function behaviors()

{

return [

'pageCache' => [

'class' => PageCache::className(),

'only' => ['index'],

'duration' => 60,

'dependency' => [

'class' => DbDependency::className(),

'sql' => 'SELECT COUNT(*) FROM post',

],

'variations' => [

\Yii::$app->language,

]

],

];

}

Please refer to the Page Caching section for more details about using PageCache.

yii\filters\RateLimiter

RateLimiter implements a rate limiting algorithm based on the leaky bucket
algorithm19. It is primarily used in implementing RESTful APIs. Please

19http://en.wikipedia.org/wiki/Leaky_bucket

http://en.wikipedia.org/wiki/Leaky_bucket

112 CHAPTER 3. APPLICATION STRUCTURE

refer to the Rate Limiting section for details about using this �lter.

yii\filters\VerbFilter

VerbFilter checks if the HTTP request methods are allowed by the requested
actions. If not allowed, it will throw an HTTP 405 exception. In the following
example, VerbFilter is declared to specify a typical set of allowed request
methods for CRUD actions.

use yii\filters\VerbFilter;

public function behaviors()

{

return [

'verbs' => [

'class' => VerbFilter::className(),

'actions' => [

'index' => ['get'],

'view' => ['get'],

'create' => ['get', 'post'],

'update' => ['get', 'put', 'post'],

'delete' => ['post', 'delete'],

],

],

];

}

yii\filters\Cors

Cross-origin resource sharing CORS20 is a mechanism that allows many re-
sources (e.g. fonts, JavaScript, etc.) on a Web page to be requested from
another domain outside the domain the resource originated from. In particu-
lar, JavaScript's AJAX calls can use the XMLHttpRequest mechanism. Such
�cross-domain� requests would otherwise be forbidden by Web browsers, per
the same origin security policy. CORS de�nes a way in which the browser
and the server can interact to determine whether or not to allow the cross-
origin request.

The yii\filters\Cors should be de�ned before Authentication / Au-
thorization �lters to make sure the CORS headers will always be sent.

use yii\filters\Cors;

use yii\helpers\ArrayHelper;

public function behaviors()

{

return ArrayHelper::merge([

[

'class' => Cors::className(),

],

20https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS

https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS

3.9. FILTERS 113

], parent::behaviors());

}

Also check the section on REST Controllers if you want to add the CORS
�lter to an yii\rest\ActiveController class in your API.

The Cors �ltering could be tuned using the yii\filters\Cors::$cors

property.

• cors['Origin']: array used to de�ne allowed origins. Can be ['*'

] (everyone) or ['http://www.myserver.net', 'http://www.myotherserver.

com']. Default to ['*'].
• cors['Access-Control-Request-Method']: array of allowed verbs like ['

GET', 'OPTIONS', 'HEAD']. Default to ['GET', 'POST', 'PUT', 'PATCH', '

DELETE', 'HEAD', 'OPTIONS'].
• cors['Access-Control-Request-Headers']: array of allowed headers. Can
be ['*'] all headers or speci�c ones ['X-Request-With']. Default to ['*

'].
• cors['Access-Control-Allow-Credentials']: de�ne if current request can
be made using credentials. Can be true, false or null (not set). Default
to null.

• cors['Access-Control-Max-Age']: de�ne lifetime of pre-�ight request. De-
fault to 86400.

For example, allowing CORS for origin : http://www.myserver.net with method
GET, HEAD and OPTIONS :

use yii\filters\Cors;

use yii\helpers\ArrayHelper;

public function behaviors()

{

return ArrayHelper::merge([

[

'class' => Cors::className(),

'cors' => [

'Origin' => ['http://www.myserver.net'],

'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'

],

],

],

], parent::behaviors());

}

You may tune the CORS headers by overriding default parameters on a per
action basis. For example adding the Access-Control-Allow-Credentials for
the login action could be done like this :

use yii\filters\Cors;

use yii\helpers\ArrayHelper;

public function behaviors()

{

114 CHAPTER 3. APPLICATION STRUCTURE

return ArrayHelper::merge([

[

'class' => Cors::className(),

'cors' => [

'Origin' => ['http://www.myserver.net'],

'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'

],

],

'actions' => [

'login' => [

'Access-Control-Allow-Credentials' => true,

]

]

],

], parent::behaviors());

}

3.10 Widgets

Widgets are reusable building blocks used in views to create complex and
con�gurable user interface elements in an object-oriented fashion. For ex-
ample, a date picker widget may generate a fancy date picker that allows
users to pick a date as their input. All you need to do is just to insert the
code in a view like the following:

<?php

use yii\jui\DatePicker;

?>

<?= DatePicker::widget(['name' => 'date']) ?>

There are a good number of widgets bundled with Yii, such as yii\widgets
\ActiveForm, yii\widgets\Menu, jQuery UI widgets, Twitter Bootstrap
widgets. In the following, we will introduce the basic knowledge about wid-
gets. Please refer to the class API documentation if you want to learn about
the usage of a particular widget.

3.10.1 Using Widgets

Widgets are primarily used in views. You can call the yii\base\Widget::

widget() method to use a widget in a view. The method takes a con�gura-
tion array for initializing the widget and returns the rendering result of the
widget. For example, the following code inserts a date picker widget which
is con�gured to use the Russian language and keep the input in the from_date

attribute of $model.

<?php

use yii\jui\DatePicker;

?>

<?= DatePicker::widget([

'model' => $model,

3.10. WIDGETS 115

'attribute' => 'from_date',

'language' => 'ru',

'clientOptions' => [

'dateFormat' => 'yy-mm-dd',

],

]) ?>

Some widgets can take a block of content which should be enclosed between
the invocation of yii\base\Widget::begin() and yii\base\Widget::end().
For example, the following code uses the yii\widgets\ActiveForm widget
to generate a login form. The widget will generate the opening and clos-
ing <form> tags at the place where begin() and end() are called, respectively.
Anything in between will be rendered as is.

<?php

use yii\widgets\ActiveForm;

use yii\helpers\Html;

?>

<?php $form = ActiveForm::begin(['id' => 'login-form']); ?>

<?= $form->field($model, 'username') ?>

<?= $form->field($model, 'password')->passwordInput() ?>

<div class="form-group">

<?= Html::submitButton('Login') ?>

</div>

<?php ActiveForm::end(); ?>

Note that unlike yii\base\Widget::widget() which returns the rendering
result of a widget, the method yii\base\Widget::begin() returns an in-
stance of the widget which you can use to build the widget content.

Note: Some widgets will use output bu�ering21 to adjust the
enclosed content when yii\base\Widget::end() is called. For
this reason calling yii\base\Widget::begin() and yii\base

\Widget::end() is expected to happen in the same view �le.
Not following this rule may result in unexpected output.

Con�guring global defaults

Global defaults for a widget type could be con�gured via DI container:

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);

See �Practical Usage� section in Dependency Injection Container guide for
details.

21http://php.net/manual/en/book.outcontrol.php

http://php.net/manual/en/book.outcontrol.php

116 CHAPTER 3. APPLICATION STRUCTURE

3.10.2 Creating Widgets

To create a widget, extend from yii\base\Widget and override the yii

\base\Widget::init() and/or yii\base\Widget::run() methods. Usu-
ally, the init() method should contain the code that normalizes the widget
properties, while the run() method should contain the code that generates
the rendering result of the widget. The rendering result may be directly
�echoed� or returned as a string by run().

In the following example, HelloWidget HTML-encodes and displays the
content assigned to its message property. If the property is not set, it will
display �Hello World� by default.

namespace app\components;

use yii\base\Widget;

use yii\helpers\Html;

class HelloWidget extends Widget

{

public $message;

public function init()

{

parent::init();

if ($this->message === null) {

$this->message = 'Hello World';

}

}

public function run()

{

return Html::encode($this->message);

}

}

To use this widget, simply insert the following code in a view:

<?php

use app\components\HelloWidget;

?>

<?= HelloWidget::widget(['message' => 'Good morning']) ?>

Below is a variant of HelloWidget which takes the content enclosed within the
begin() and end() calls, HTML-encodes it and then displays it.

namespace app\components;

use yii\base\Widget;

use yii\helpers\Html;

class HelloWidget extends Widget

{

public function init()

{

3.10. WIDGETS 117

parent::init();

ob_start();

}

public function run()

{

$content = ob_get_clean();

return Html::encode($content);

}

}

As you can see, PHP's output bu�er is started in init() so that any output
between the calls of init() and run() can be captured, processed and returned
in run().

Info: When you call yii\base\Widget::begin(), a new in-
stance of the widget will be created and the init() method will
be called at the end of the widget constructor. When you call
yii\base\Widget::end(), the run() method will be called whose
return result will be echoed by end().

The following code shows how to use this new variant of HelloWidget:

<?php

use app\components\HelloWidget;

?>

<?php HelloWidget::begin(); ?>

content that may contain <tag>'s

<?php HelloWidget::end(); ?>

Sometimes, a widget may need to render a big chunk of content. While you
can embed the content within the run() method, a better approach is to put
it in a view and call yii\base\Widget::render() to render it. For example,

public function run()

{

return $this->render('hello');

}

By default, views for a widget should be stored in �les in the WidgetPath

/views directory, where WidgetPath stands for the directory containing the
widget class �le. Therefore, the above example will render the view �le
@app/components/views/hello.php, assuming the widget class is located under
@app/components. You may override the yii\base\Widget::getViewPath()

method to customize the directory containing the widget view �les.

3.10.3 Best Practices

Widgets are an object-oriented way of reusing view code.

118 CHAPTER 3. APPLICATION STRUCTURE

When creating widgets, you should still follow the MVC pattern. In
general, you should keep logic in widget classes and keep presentation in
views.

Widgets should be designed to be self-contained. That is, when using a
widget, you should be able to just drop it in a view without doing anything
else. This could be tricky if a widget requires external resources, such as
CSS, JavaScript, images, etc. Fortunately, Yii provides the support for asset
bundles, which can be utilized to solve the problem.

When a widget contains view code only, it is very similar to a view. In
fact, in this case, their only di�erence is that a widget is a redistributable
class, while a view is just a plain PHP script that you would prefer to keep
within your application.

3.11 Assets

An asset in Yii is a �le that may be referenced in a Web page. It can be a
CSS �le, a JavaScript �le, an image or video �le, etc. Assets are located in
Web-accessible directories and are directly served by Web servers.

It is often preferable to manage assets programmatically. For example,
when you use the yii\jui\DatePicker widget in a page, it will automat-
ically include the required CSS and JavaScript �les, instead of asking you
to manually �nd these �les and include them. And when you upgrade the
widget to a new version, it will automatically use the new version of the
asset �les. In this tutorial, we will describe the powerful asset management
capability provided in Yii.

3.11.1 Asset Bundles

Yii manages assets in the unit of asset bundle. An asset bundle is simply a
collection of assets located in a directory. When you register an asset bundle
in a view, it will include the CSS and JavaScript �les in the bundle in the
rendered Web page.

3.11.2 De�ning Asset Bundles

Asset bundles are speci�ed as PHP classes extending from yii\web\AssetBundle.
The name of a bundle is simply its corresponding fully quali�ed PHP class
name (without the leading backslash). An asset bundle class should be
autoloadable. It usually speci�es where the assets are located, what CSS
and JavaScript �les the bundle contains, and how the bundle depends on
other bundles.

The following code de�nes the main asset bundle used by the basic project
template:

3.11. ASSETS 119

<?php

namespace app\assets;

use yii\web\AssetBundle;

class AppAsset extends AssetBundle

{

public $basePath = '@webroot';

public $baseUrl = '@web';

public $css = [

'css/site.css',

];

public $js = [

];

public $depends = [

'yii\web\YiiAsset',

'yii\bootstrap\BootstrapAsset',

];

}

The above AppAsset class speci�es that the asset �les are located under the
@webroot directory which corresponds to the URL @web; the bundle contains a
single CSS �le css/site.css and no JavaScript �le; the bundle depends on two
other bundles: yii\web\YiiAsset and yii\bootstrap\BootstrapAsset.
More detailed explanation about the properties of yii\web\AssetBundle

can be found in the following:

• yii\web\AssetBundle::sourcePath: speci�es the root directory that
contains the asset �les in this bundle. This property should be set if the
root directory is not Web accessible. Otherwise, you should set the yii
\web\AssetBundle::basePath property and yii\web\AssetBundle::

baseUrl, instead. Path aliases can be used here.
• yii\web\AssetBundle::basePath: speci�es a Web-accessible direct-
ory that contains the asset �les in this bundle. When you specify the
yii\web\AssetBundle::sourcePath property, the asset manager will
publish the assets in this bundle to a Web-accessible directory and
overwrite this property accordingly. You should set this property if
your asset �les are already in a Web-accessible directory and do not
need asset publishing. Path aliases can be used here.

• yii\web\AssetBundle::baseUrl: speci�es the URL corresponding to
the directory yii\web\AssetBundle::basePath. Like yii\web\AssetBundle
::basePath, if you specify the yii\web\AssetBundle::sourcePath

property, the asset manager will publish the assets and overwrite this
property accordingly. Path aliases can be used here.

• yii\web\AssetBundle::js: an array listing the JavaScript �les con-
tained in this bundle. Note that only forward slash �/� should be used
as directory separators. Each JavaScript �le can be speci�ed in one of
the following two formats:

120 CHAPTER 3. APPLICATION STRUCTURE

� a relative path representing a local JavaScript �le (e.g. js/main.

js). The actual path of the �le can be determined by prepending
yii\web\AssetManager::basePath to the relative path, and the
actual URL of the �le can be determined by prepending yii\web

\AssetManager::baseUrl to the relative path.
� an absolute URL representing an external JavaScript �le. For ex-
ample, http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min
.js or //ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js.

• yii\web\AssetBundle::css: an array listing the CSS �les contained
in this bundle. The format of this array is the same as that of yii\web
\AssetBundle::js.

• yii\web\AssetBundle::depends: an array listing the names of the
asset bundles that this bundle depends on (to be explained shortly).

• yii\web\AssetBundle::jsOptions: speci�es the options that will be
passed to the yii\web\View::registerJsFile() method when it is
called to register every JavaScript �le in this bundle.

• yii\web\AssetBundle::cssOptions: speci�es the options that will be
passed to the yii\web\View::registerCssFile() method when it is
called to register every CSS �le in this bundle.

• yii\web\AssetBundle::publishOptions: speci�es the options that
will be passed to the yii\web\AssetManager::publish()method when
it is called to publish source asset �les to a Web directory. This is only
used if you specify the yii\web\AssetBundle::sourcePath property.

Asset Locations

Assets, based on their location, can be classi�ed as:

• source assets: the asset �les are located together with PHP source code
which cannot be directly accessed via Web. In order to use source assets
in a page, they should be copied to a Web directory and turned into
the so-called published assets. This process is called asset publishing

which will be described in detail shortly.
• published assets: the asset �les are located in a Web directory and can
thus be directly accessed via Web.

• external assets: the asset �les are located on a Web server that is
di�erent from the one hosting your Web application.

When de�ning an asset bundle class, if you specify the yii\web\AssetBundle
::sourcePath property, it means any assets listed using relative paths will be
considered as source assets. If you do not specify this property, it means those
assets are published assets (you should therefore specify yii\web\AssetBundle
::basePath and yii\web\AssetBundle::baseUrl to let Yii know where
they are located).

It is recommended that you place assets belonging to an application in a
Web directory to avoid the unnecessary asset publishing process. This is why

3.11. ASSETS 121

AppAsset in the prior example speci�es yii\web\AssetBundle::basePath in-
stead of yii\web\AssetBundle::sourcePath.

For extensions, because their assets are located together with their source
code in directories that are not Web accessible, you have to specify the
yii\web\AssetBundle::sourcePath property when de�ning asset bundle
classes for them.

Note: Do not use @webroot/assets as the yii\web\AssetBundle
::sourcePath. This directory is used by default by the yii\web
\AssetManager to save the asset �les published from their source
location. Any content in this directory is considered temporarily
and may be subject to removal.

Asset Dependencies

When you include multiple CSS or JavaScript �les in a Web page, they have
to follow a certain order to avoid overriding issues. For example, if you are
using a jQuery UI widget in a Web page, you have to make sure the jQuery
JavaScript �le is included before the jQuery UI JavaScript �le. We call such
ordering the dependencies among assets.

Asset dependencies are mainly speci�ed through the yii\web\AssetBundle
::depends property. In the AppAsset example, the asset bundle depends on
two other asset bundles: yii\web\YiiAsset and yii\bootstrap\BootstrapAsset,
which means the CSS and JavaScript �les in AppAsset will be included after

those �les in the two dependent bundles.
Asset dependencies are transitive. This means if bundle A depends on B

which depends on C, A will depend on C, too.

Asset Options

You can specify the yii\web\AssetBundle::cssOptions and yii\web\AssetBundle
::jsOptions properties to customize the way that CSS and JavaScript �les
are included in a page. The values of these properties will be passed to the
yii\web\View::registerCssFile() and yii\web\View::registerJsFile()
methods, respectively, when they are called by the view to include CSS and
JavaScript �les.

Note: The options you set in a bundle class apply to every CSS/-
JavaScript �le in the bundle. If you want to use di�erent options
for di�erent �les, you should create separate asset bundles, and
use one set of options in each bundle.

For example, to conditionally include a CSS �le for browsers that are IE9 or
below, you can use the following option:

public $cssOptions = ['condition' => 'lte IE9'];

122 CHAPTER 3. APPLICATION STRUCTURE

This will cause a CSS �le in the bundle to be included using the following
HTML tags:

<!--[if lte IE9]>

<link rel="stylesheet" href="path/to/foo.css">

<![endif]-->

To wrap the generated CSS link tags within <noscript>, you can con�gure
cssOptions as follows,

public $cssOptions = ['noscript' => true];

To include a JavaScript �le in the head section of a page (by default, JavaS-
cript �les are included at the end of the body section), use the following
option:

public $jsOptions = ['position' => \yii\web\View::POS_HEAD];

By default, when an asset bundle is being published, all contents in the dir-
ectory speci�ed by yii\web\AssetBundle::sourcePath will be published.
You can customize this behavior by con�guring the yii\web\AssetBundle

::publishOptions property. For example, to publish only one or a few sub-
directories of yii\web\AssetBundle::sourcePath, you can do the following
in the asset bundle class:

<?php

namespace app\assets;

use yii\web\AssetBundle;

class FontAwesomeAsset extends AssetBundle

{

public $sourcePath = '@bower/font-awesome';

public $css = [

'css/font-awesome.min.css',

];

public $publishOptions = [

'only' => [

'fonts/',

'css/',

]

];

}

The above example de�nes an asset bundle for the �fontawesome� package22.
By specifying the only publishing option, only the fonts and css subdirect-
ories will be published.

22http://fontawesome.io/

http://fontawesome.io/

3.11. ASSETS 123

Bower and NPM Assets

Most JavaScript/CSS packages are managed by Bower23 and/or NPM24. If
your application or extension is using such a package, it is recommended
that you follow these steps to manage the assets in the library:

1. Modify the composer.json �le of your application or extension and list
the package in the require entry. You should use bower-asset/PackageName
(for Bower packages) or npm-asset/PackageName (for NPM packages) to
refer to the library.

2. Create an asset bundle class and list the JavaScript/CSS �les that you
plan to use in your application or extension. You should specify the
yii\web\AssetBundle::sourcePath property as @bower/PackageName or
@npm/PackageName. This is because Composer will install the Bower or
NPM package in the directory corresponding to this alias.

Note: Some packages may put all their distributed �les in a
subdirectory. If this is the case, you should specify the subdir-
ectory as the value of yii\web\AssetBundle::sourcePath. For
example, yii\web\JqueryAsset uses @bower/jquery/dist instead
of @bower/jquery.

3.11.3 Using Asset Bundles

To use an asset bundle, register it with a view by calling the yii\web

\AssetBundle::register() method. For example, in a view template you
can register an asset bundle like the following:

use app\assets\AppAsset;

AppAsset::register($this); // $this represents the view object

Info: The yii\web\AssetBundle::register() method returns
an asset bundle object containing the information about the pub-
lished assets, such as yii\web\AssetBundle::basePath or yii
\web\AssetBundle::baseUrl.

If you are registering an asset bundle in other places, you should provide the
needed view object. For example, to register an asset bundle in a widget
class, you can get the view object by $this->view.

When an asset bundle is registered with a view, behind the scenes Yii will
register all its dependent asset bundles. And if an asset bundle is located in a
directory inaccessible through the Web, it will be published to a Web direct-
ory. Later, when the view renders a page, it will generate <link> and <script>

23http://bower.io/
24https://www.npmjs.org/

http://bower.io/
https://www.npmjs.org/

124 CHAPTER 3. APPLICATION STRUCTURE

tags for the CSS and JavaScript �les listed in the registered bundles. The
order of these tags is determined by the dependencies among the registered
bundles and the order of the assets listed in the yii\web\AssetBundle::

css and yii\web\AssetBundle::js properties.

Dynamic Asset Bundles

Being a regular PHP class asset bundle can bear some extra logic related
to it and may adjust its internal parameters dynamically. For example: you
may use som sophisticated JavaScript library, which provides some inter-
nationalization packed in separated source �les: each per each supported
language. Thus you will need to add particular `.js' �le to your page in order
to make library translation work. This can be achieved overriding yii\web

\AssetBundle::init() method:

namespace app\assets;

use yii\web\AssetBundle;

use Yii;

class SophisticatedAssetBundle extends AssetBundle

{

public $sourcePath = '/path/to/sophisticated/src';

public $js = [

'sophisticated.js' // file, which is always used

];

public function init()

{

parent::init();

$this->js[] = 'i18n/' . Yii::$app->language . '.js'; // dynamic file

added

}

}

Particular asset bundle can also be adjusted via its instance returned by yii

\web\AssetBundle::register(). For example:

use app\assets\SophisticatedAssetBundle;

use Yii;

$bundle = SophisticatedAssetBundle::register(Yii::$app->view);

$bundle->js[] = 'i18n/' . Yii::$app->language . '.js'; // dynamic file added

Note: although dynamic adjustment of the asset bundles is sup-
ported, it is a bad practice, which may lead to unexpected side
e�ects, and should be avoided if possible.

3.11. ASSETS 125

Customizing Asset Bundles

Yii manages asset bundles through an application component named assetManager

which is implemented by yii\web\AssetManager. By con�guring the yii

\web\AssetManager::bundles property, it is possible to customize the be-
havior of an asset bundle. For example, the default yii\web\JqueryAsset
asset bundle uses the jquery.js �le from the installed jquery Bower package.
To improve the availability and performance, you may want to use a version
hosted by Google. This can be achieved by con�guring assetManager in the
application con�guration like the following:

return [

// ...

'components' => [

'assetManager' => [

'bundles' => [

'yii\web\JqueryAsset' => [

'sourcePath' => null, // do not publish the bundle

'js' => [

'//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery

.min.js',

]

],

],

],

],

];

You can con�gure multiple asset bundles similarly through yii\web\AssetManager
::bundles. The array keys should be the class names (without the leading
backslash) of the asset bundles, and the array values should be the corres-
ponding con�guration arrays.

Tip: You can conditionally choose which assets to use in an asset
bundle. The following example shows how to use jquery.js in the
development environment and jquery.min.js otherwise:

'yii\web\JqueryAsset' => [

'js' => [

YII_ENV_DEV ? 'jquery.js' : 'jquery.min.js'

]

],

You can disable one or multiple asset bundles by associating false with the
names of the asset bundles that you want to disable. When you register
a disabled asset bundle with a view, none of its dependent bundles will be
registered, and the view also will not include any of the assets in the bundle
in the page it renders. For example, to disable yii\web\JqueryAsset, you
can use the following con�guration:

126 CHAPTER 3. APPLICATION STRUCTURE

return [

// ...

'components' => [

'assetManager' => [

'bundles' => [

'yii\web\JqueryAsset' => false,

],

],

],

];

You can also disable all asset bundles by setting yii\web\AssetManager::

bundles as false.
Keep in mind that customization made via yii\web\AssetManager::

bundles is applied at the creation of the asset bundle, e.g. at object con-
structor stage. Thus any adjustments made to the bundle object after that
will override the mapping setup at yii\web\AssetManager::bundles level.
In particular: adjustments made inside yii\web\AssetBundle::init()method
or over the registered bundle object will take precedence over AssetManager

con�guration. Here are the examples, where mapping set via yii\web

\AssetManager::bundles makes no e�ect:

// Program source code:

namespace app\assets;

use yii\web\AssetBundle;

use Yii;

class LanguageAssetBundle extends AssetBundle

{

// ...

public function init()

{

parent::init();

$this->baseUrl = '@web/i18n/' . Yii::$app->language; // can NOT be

handled by `AssetManager`!

}

}

// ...

$bundle = \app\assets\LargeFileAssetBundle::register(Yii::$app->view);

$bundle->baseUrl = YII_DEBUG ? '@web/large-files': '@web/large-files/

minified'; // can NOT be handled by `AssetManager`!

// Application config :

return [

// ...

'components' => [

'assetManager' => [

3.11. ASSETS 127

'bundles' => [

'app\assets\LanguageAssetBundle' => [

'baseUrl' => 'http://some.cdn.com/files/i18n/en' //

makes NO effect!

],

'app\assets\LargeFileAssetBundle' => [

'baseUrl' => 'http://some.cdn.com/files/large-files' //

makes NO effect!

],

],

],

],

];

Asset Mapping

Sometimes you may want to ��x� incorrect/incompatible asset �le paths used
in multiple asset bundles. For example, bundle A uses jquery.min.js version
1.11.1, and bundle B uses jquery.js version 2.1.1. While you can �x the
problem by customizing each bundle, an easier way is to use the asset map

feature to map incorrect assets to the desired ones. To do so, con�gure the
yii\web\AssetManager::assetMap property like the following:

return [

// ...

'components' => [

'assetManager' => [

'assetMap' => [

'jquery.js' => '//ajax.googleapis.com/ajax/libs/jquery

/2.1.1/jquery.min.js',

],

],

],

];

The keys of yii\web\AssetManager::assetMap are the asset names that you
want to �x, and the values are the desired asset paths. When you register an
asset bundle with a view, each relative asset �le in its yii\web\AssetBundle
::css and yii\web\AssetBundle::js arrays will be examined against this
map. If any of the keys are found to be the last part of an asset �le (which
is pre�xed with yii\web\AssetBundle::sourcePath if available), the cor-
responding value will replace the asset and be registered with the view. For
example, the asset �le my/path/to/jquery.js matches the key jquery.js.

Note: Only assets speci�ed using relative paths are subject to
asset mapping. The target asset paths should be either absolute
URLs or paths relative to yii\web\AssetManager::basePath.

128 CHAPTER 3. APPLICATION STRUCTURE

Asset Publishing

As aforementioned, if an asset bundle is located in a directory that is not
Web accessible, its assets will be copied to a Web directory when the bundle
is being registered with a view. This process is called asset publishing, and
is done automatically by the yii\web\AssetManager.

By default, assets are published to the directory @webroot/assets which
corresponds to the URL @web/assets. You may customize this location by con-
�guring the yii\web\AssetManager::basePath and yii\web\AssetManager
::baseUrl properties.

Instead of publishing assets by �le copying, you may consider using sym-
bolic links, if your OS and Web server allow. This feature can be enabled by
setting yii\web\AssetManager::linkAssets to be true.

return [

// ...

'components' => [

'assetManager' => [

'linkAssets' => true,

],

],

];

With the above con�guration, the asset manager will create a symbolic link
to the source path of an asset bundle when it is being published. This is
faster than �le copying and can also ensure that the published assets are
always up-to-date.

Cache Busting

For Web application running in production mode, it is a common practice
to enable HTTP caching for assets and other static resources. A drawback
of this practice is that whenever you modify an asset and deploy it to pro-
duction, a user client may still use the old version due to the HTTP caching.
To overcome this drawback, you may use the cache busting feature, which
was introduced in version 2.0.3, by con�guring yii\web\AssetManager like
the following:

return [

// ...

'components' => [

'assetManager' => [

'appendTimestamp' => true,

],

],

];

By doing so, the URL of every published asset will be appended with its
last modi�cation timestamp. For example, the URL to yii.js may look like
/assets/5515a87c/yii.js?v=1423448645", where the parameter v represents the

3.11. ASSETS 129

last modi�cation timestamp of the yii.js �le. Now if you modify an asset, its
URL will be changed, too, which causes the client to fetch the latest version
of the asset.

3.11.4 Commonly Used Asset Bundles

The core Yii code has de�ned many asset bundles. Among them, the follow-
ing bundles are commonly used and may be referenced in your application
or extension code.

• yii\web\YiiAsset: It mainly includes the yii.js �le which implements
a mechanism of organizing JavaScript code in modules. It also provides
special support for data-method and data-confirm attributes and other
useful features. More information about yii.js can be found in the
Client Scripts Section.

• yii\web\JqueryAsset: It includes the jquery.js �le from the jQuery
Bower package.

• yii\bootstrap\BootstrapAsset: It includes the CSS �le from the
Twitter Bootstrap framework.

• yii\bootstrap\BootstrapPluginAsset: It includes the JavaScript
�le from the Twitter Bootstrap framework for supporting Bootstrap
JavaScript plugins.

• yii\jui\JuiAsset: It includes the CSS and JavaScript �les from the
jQuery UI library.

If your code depends on jQuery, jQuery UI or Bootstrap, you should use
these prede�ned asset bundles rather than creating your own versions. If the
default setting of these bundles do not satisfy your needs, you may customize
them as described in the Customizing Asset Bundle subsection.

3.11.5 Asset Conversion

Instead of directly writing CSS and/or JavaScript code, developers often
write them in some extended syntax and use special tools to convert it into
CSS/JavaScript. For example, for CSS code you may use LESS25 or SCSS26;
and for JavaScript you may use TypeScript27.

You can list the asset �les in extended syntax in the yii\web\AssetBundle
::css and yii\web\AssetBundle::js properties of an asset bundle. For ex-
ample,

class AppAsset extends AssetBundle

{

public $basePath = '@webroot';

public $baseUrl = '@web';

public $css = [

25http://lesscss.org/
26http://sass-lang.com/
27http://www.typescriptlang.org/

http://lesscss.org/
http://sass-lang.com/
http://www.typescriptlang.org/

130 CHAPTER 3. APPLICATION STRUCTURE

'css/site.less',

];

public $js = [

'js/site.ts',

];

public $depends = [

'yii\web\YiiAsset',

'yii\bootstrap\BootstrapAsset',

];

}

When you register such an asset bundle with a view, the yii\web\AssetManager
will automatically run the pre-processor tools to convert assets in recognized
extended syntax into CSS/JavaScript. When the view �nally renders a page,
it will include the CSS/JavaScript �les in the page, instead of the original
assets in extended syntax.

Yii uses the �le name extensions to identify which extended syntax an
asset is in. By default it recognizes the following syntax and �le name ex-
tensions:

• LESS28: .less
• SCSS29: .scss
• Stylus30: .styl

• Co�eeScript31: .coffee

• TypeScript32: .ts

Yii relies on the installed pre-processor tools to convert assets. For example,
to use LESS33 you should install the lessc pre-processor command.

You can customize the pre-processor commands and the supported ex-
tended syntax by con�guring yii\web\AssetManager::converter like the
following:

return [

'components' => [

'assetManager' => [

'converter' => [

'class' => 'yii\web\AssetConverter',

'commands' => [

'less' => ['css', 'lessc {from} {to} --no-color'],

'ts' => ['js', 'tsc --out {to} {from}'],

],

],

],

],

];

28http://lesscss.org/
29http://sass-lang.com/
30http://learnboost.github.io/stylus/
31http://coffeescript.org/
32http://www.typescriptlang.org/
33http://lesscss.org/

http://lesscss.org/
http://sass-lang.com/
http://learnboost.github.io/stylus/
http://coffeescript.org/
http://www.typescriptlang.org/
http://lesscss.org/

3.11. ASSETS 131

In the above, we specify the supported extended syntax via the yii\web

\AssetConverter::commands property. The array keys are the �le extension
names (without leading dot), and the array values are the resulting asset �le
extension names and the commands for performing the asset conversion. The
tokens {from} and {to} in the commands will be replaced with the source asset
�le paths and the target asset �le paths.

Info: There are other ways of working with assets in extended
syntax, besides the one described above. For example, you can
use build tools such as grunt34 to monitor and automatically
convert assets in extended syntax. In this case, you should list
the resulting CSS/JavaScript �les in asset bundles rather than
the original �les.

3.11.6 Combining and Compressing Assets

A Web page can include many CSS and/or JavaScript �les. To reduce the
number of HTTP requests and the overall download size of these �les, a
common practice is to combine and compress multiple CSS/JavaScript �les
into one or very few �les, and then include these compressed �les instead of
the original ones in the Web pages.

Info: Combining and compressing assets are usually needed
when an application is in production mode. In development
mode, using the original CSS/JavaScript �les is often more con-
venient for debugging purposes.

In the following, we introduce an approach to combine and compress asset
�les without the need to modify your existing application code.

1. Find all the asset bundles in your application that you plan to combine
and compress.

2. Divide these bundles into one or a few groups. Note that each bundle
can only belong to a single group.

3. Combine/compress the CSS �les in each group into a single �le. Do
this similarly for the JavaScript �les.

4. De�ne a new asset bundle for each group:

• Set the yii\web\AssetBundle::css and yii\web\AssetBundle

::js properties to be the combined CSS and JavaScript �les,
respectively.

34http://gruntjs.com/

http://gruntjs.com/

132 CHAPTER 3. APPLICATION STRUCTURE

• Customize the asset bundles in each group by setting their yii

\web\AssetBundle::css and yii\web\AssetBundle::js prop-
erties to be empty, and setting their yii\web\AssetBundle::

depends property to be the new asset bundle created for the
group.

Using this approach, when you register an asset bundle in a view, it causes
the automatic registration of the new asset bundle for the group that the
original bundle belongs to. And as a result, the combined/compressed asset
�les are included in the page, instead of the original ones.

An Example

Let's use an example to further explain the above approach.
Assume your application has two pages, X and Y. Page X uses asset

bundles A, B and C, while Page Y uses asset bundles B, C and D.
You have two ways to divide these asset bundles. One is to use a single

group to include all asset bundles, the other is to put A in Group X, D
in Group Y, and (B, C) in Group S. Which one is better? It depends.
The �rst way has the advantage that both pages share the same combined
CSS and JavaScript �les, which makes HTTP caching more e�ective. On
the other hand, because the single group contains all bundles, the size of
the combined CSS and JavaScript �les will be bigger and thus increase the
initial �le transmission time. For simplicity in this example, we will use the
�rst way, i.e., use a single group to contain all bundles.

Info: Dividing asset bundles into groups is not trivial task. It
usually requires analysis about the real world tra�c data of vari-
ous assets on di�erent pages. At the beginning, you may start
with a single group for simplicity.

Use existing tools (e.g. Closure Compiler35, YUI Compressor36) to combine
and compress CSS and JavaScript �les in all the bundles. Note that the �les
should be combined in the order that satis�es the dependencies among the
bundles. For example, if Bundle A depends on B which depends on both C
and D, then you should list the asset �les starting from C and D, followed
by B and �nally A.

After combining and compressing, we get one CSS �le and one JavaScript
�le. Assume they are named as all-xyz.css and all-xyz.js, where xyz stands
for a timestamp or a hash that is used to make the �le name unique to avoid
HTTP caching problems.

We are at the last step now. Con�gure the yii\web\AssetManager as
follows in the application con�guration:

35https://developers.google.com/closure/compiler/
36https://github.com/yui/yuicompressor/

https://developers.google.com/closure/compiler/
https://github.com/yui/yuicompressor/

3.11. ASSETS 133

return [

'components' => [

'assetManager' => [

'bundles' => [

'all' => [

'class' => 'yii\web\AssetBundle',

'basePath' => '@webroot/assets',

'baseUrl' => '@web/assets',

'css' => ['all-xyz.css'],

'js' => ['all-xyz.js'],

],

'A' => ['css' => [], 'js' => [], 'depends' => ['all']],

'B' => ['css' => [], 'js' => [], 'depends' => ['all']],

'C' => ['css' => [], 'js' => [], 'depends' => ['all']],

'D' => ['css' => [], 'js' => [], 'depends' => ['all']],

],

],

],

];

As explained in the Customizing Asset Bundles subsection, the above con�g-
uration changes the default behavior of each bundle. In particular, Bundle
A, B, C and D no longer have any asset �les. They now all depend on
the all bundle which contains the combined all-xyz.css and all-xyz.js �les.
Consequently, for Page X, instead of including the original source �les from
Bundle A, B and C, only these two combined �les will be included; the same
thing happens to Page Y.

There is one �nal trick to make the above approach work more smoothly.
Instead of directly modifying the application con�guration �le, you may put
the bundle customization array in a separate �le and conditionally include
this �le in the application con�guration. For example,

return [

'components' => [

'assetManager' => [

'bundles' => require(__DIR__ . '/' . (YII_ENV_PROD ? 'assets-

prod.php' : 'assets-dev.php')),

],

],

];

That is, the asset bundle con�guration array is saved in assets-prod.php for
production mode, and assets-dev.php for non-production mode.

Note: this asset combining mechanism is based on the ability
of yii\web\AssetManager::bundles to override the properties
of the registered asset bundles. However, as it already has been
said above, this ability does not cover asset bundle adjustments,
which are performed at yii\web\AssetBundle::init() method
or after bundle is registered. You should avoid usage of such
dynamic bundles during the asset combining.

134 CHAPTER 3. APPLICATION STRUCTURE

Using the asset Command

Yii provides a console command named asset to automate the approach that
we just described.

To use this command, you should �rst create a con�guration �le to
describe what asset bundles should be combined and how they should be
grouped. You can use the asset/template sub-command to generate a tem-
plate �rst and then modify it to �t for your needs.

yii asset/template assets.php

The command generates a �le named assets.php in the current directory.
The content of this �le looks like the following:

<?php

/**

* Configuration file for the "yii asset" console command.

* Note that in the console environment, some path aliases like '@webroot'

and '@web' may not exist.

* Please define these missing path aliases.

*/

return [

// Adjust command/callback for JavaScript files compressing:

'jsCompressor' => 'java -jar compiler.jar --js {from} --js_output_file {

to}',

// Adjust command/callback for CSS files compressing:

'cssCompressor' => 'java -jar yuicompressor.jar --type css {from} -o {to

}',

// Whether to delete asset source after compression:

'deleteSource' => false,

// The list of asset bundles to compress:

'bundles' => [

// 'yii\web\YiiAsset',

// 'yii\web\JqueryAsset',

],

// Asset bundle for compression output:

'targets' => [

'all' => [

'class' => 'yii\web\AssetBundle',

'basePath' => '@webroot/assets',

'baseUrl' => '@web/assets',

'js' => 'js/all-{hash}.js',

'css' => 'css/all-{hash}.css',

],

],

// Asset manager configuration:

'assetManager' => [

],

];

You should modify this �le and specify which bundles you plan to combine in
the bundles option. In the targets option you should specify how the bundles
should be divided into groups. You can specify one or multiple groups, as
aforementioned.

3.11. ASSETS 135

Note: Because the alias @webroot and @web are not available in
the console application, you should explicitly de�ne them in the
con�guration.

JavaScript �les are combined, compressed and written to js/all-{hash}.js

where {hash} is replaced with the hash of the resulting �le.
The jsCompressor and cssCompressor options specify the console commands

or PHP callbacks for performing JavaScript and CSS combining/compress-
ing. By default, Yii uses Closure Compiler37 for combining JavaScript �les
and YUI Compressor38 for combining CSS �les. You should install those
tools manually or adjust these options to use your favorite tools.

With the con�guration �le, you can run the asset command to combine
and compress the asset �les and then generate a new asset bundle con�gur-
ation �le assets-prod.php:

yii asset assets.php config/assets-prod.php

The generated con�guration �le can be included in the application con�gur-
ation, like described in the last subsection.

Note: in case you customize asset bundles for your application
via yii\web\AssetManager::bundles or yii\web\AssetManager
::assetMap and want this customization to be applied for the
compression source �les, you should include these options to the
assetManager section inside asset command con�guration �le.

Note: while specifying the compression source, you should avoid
the use of asset bundles whose parameters may be adjusted dy-
namically (e.g. at init() method or after registration), since they
may work incorrectly after compression.

Info: Using the asset command is not the only option to auto-
mate the asset combining and compressing process. You can use
the excellent task runner tool grunt39 to achieve the same goal.

Grouping Asset Bundles

In the last subsection, we have explained how to combine all asset bundles
into a single one in order to minimize the HTTP requests for asset �les
referenced in an application. This is not always desirable in practice. For
example, imagine your application has a �front end� as well as a �back end�,
each of which uses a di�erent set of JavaScript and CSS �les. In this case,
combining all asset bundles from both ends into a single one does not make

37https://developers.google.com/closure/compiler/
38https://github.com/yui/yuicompressor/
39http://gruntjs.com/

https://developers.google.com/closure/compiler/
https://github.com/yui/yuicompressor/
http://gruntjs.com/

136 CHAPTER 3. APPLICATION STRUCTURE

sense, because the asset bundles for the �front end� are not used by the �back
end� and it would be a waste of network bandwidth to send the �back end�
assets when a �front end� page is requested.

To solve the above problem, you can divide asset bundles into groups and
combine asset bundles for each group. The following con�guration shows how
you can group asset bundles:

return [

...

// Specify output bundles with groups:

'targets' => [

'allShared' => [

'js' => 'js/all-shared-{hash}.js',

'css' => 'css/all-shared-{hash}.css',

'depends' => [

// Include all assets shared between 'backend' and 'frontend

'

'yii\web\YiiAsset',

'app\assets\SharedAsset',

],

],

'allBackEnd' => [

'js' => 'js/all-{hash}.js',

'css' => 'css/all-{hash}.css',

'depends' => [

// Include only 'backend' assets:

'app\assets\AdminAsset'

],

],

'allFrontEnd' => [

'js' => 'js/all-{hash}.js',

'css' => 'css/all-{hash}.css',

'depends' => [], // Include all remaining assets

],

],

...

];

As you can see, the asset bundles are divided into three groups: allShared,
allBackEnd and allFrontEnd. They each depends on an appropriate set of asset
bundles. For example, allBackEnd depends on app\assets\AdminAsset. When
running asset command with this con�guration, it will combine asset bundles
according to the above speci�cation.

Info: You may leave the depends con�guration empty for one of
the target bundle. By doing so, that particular asset bundle will
depend on all of the remaining asset bundles that other target
bundles do not depend on.

3.12. EXTENSIONS 137

3.12 Extensions

Extensions are redistributable software packages speci�cally designed to be
used in Yii applications and provide ready-to-use features. For example, the
yiisoft/yii2-debug40 extension adds a handy debug toolbar at the bottom
of every page in your application to help you more easily grasp how the
pages are generated. You can use extensions to accelerate your development
process. You can also package your code as extensions to share with other
people your great work.

Info: We use the term �extension� to refer to Yii-speci�c software
packages. For general purpose software packages that can be used
without Yii, we will refer to them using the term �package� or
�library�.

3.12.1 Using Extensions

To use an extension, you need to install it �rst. Most extensions are distrib-
uted as Composer41 packages which can be installed by taking the following
two simple steps:

1. modify the composer.json �le of your application and specify which ex-
tensions (Composer packages) you want to install.

2. run composer install to install the speci�ed extensions.

Note that you may need to install Composer42 if you do not have it.

By default, Composer installs packages registered on Packagist43 - the
biggest repository for open source Composer packages. You can look for
extensions on Packagist. You may also create your own repository44 and
con�gure Composer to use it. This is useful if you are developing private
extensions that you want to share within your projects only.

Extensions installed by Composer are stored in the BasePath/vendor direct-
ory, where BasePath refers to the application's base path. Because Composer
is a dependency manager, when it installs a package, it will also install all
its dependent packages.

For example, to install the yiisoft/yii2-imagine extension, modify your
composer.json like the following:

{

// ...

40https://github.com/yiisoft/yii2-debug
41https://getcomposer.org/
42https://getcomposer.org/
43https://packagist.org/
44https://getcomposer.org/doc/05-repositories.md#repository

https://github.com/yiisoft/yii2-debug
https://getcomposer.org/
https://getcomposer.org/
https://packagist.org/
https://getcomposer.org/doc/05-repositories.md#repository

138 CHAPTER 3. APPLICATION STRUCTURE

"require": {

// ... other dependencies

"yiisoft/yii2-imagine": "*"

}

}

After the installation, you should see the directory yiisoft/yii2-imagine under
BasePath/vendor. You should also see another directory imagine/imagine which
contains the installed dependent package.

Info: The yiisoft/yii2-imagine is a core extension developed and
maintained by the Yii developer team. All core extensions are
hosted on Packagist45 and named like yiisoft/yii2-xyz, where xyz

varies for di�erent extensions.

Now you can use the installed extensions like they are part of your applic-
ation. The following example shows how you can use the yii\imagine\Image

class provided by the yiisoft/yii2-imagine extension:

use Yii;

use yii\imagine\Image;

// generate a thumbnail image

Image::thumbnail('@webroot/img/test-image.jpg', 120, 120)

->save(Yii::getAlias('@runtime/thumb-test-image.jpg'), ['quality' =>

50]);

Info: Extension classes are autoloaded by the Yii class auto-
loader.

Installing Extensions Manually

In some rare occasions, you may want to install some or all extensions manu-
ally, rather than relying on Composer. To do so, you should:

1. download the extension archive �les and unpack them in the vendor

directory.

2. install the class autoloaders provided by the extensions, if any.

3. download and install all dependent extensions as instructed.

If an extension does not have a class autoloader but follows the PSR-4 stand-
ard46, you may use the class autoloader provided by Yii to autoload the

45https://packagist.org/
46http://www.php-fig.org/psr/psr-4/

https://packagist.org/
http://www.php-fig.org/psr/psr-4/

3.12. EXTENSIONS 139

extension classes. All you need to do is just to declare a root alias for the
extension root directory. For example, assuming you have installed an ex-
tension in the directory vendor/mycompany/myext, and the extension classes are
under the myext namespace, then you can include the following code in your
application con�guration:

[

'aliases' => [

'@myext' => '@vendor/mycompany/myext',

],

]

3.12.2 Creating Extensions

You may consider creating an extension when you feel the need to share with
other people your great code. An extension can contain any code you like,
such as a helper class, a widget, a module, etc.

It is recommended that you create an extension in terms of a Composer
package47 so that it can be more easily installed and used by other users, as
described in the last subsection.

Below are the basic steps you may follow to create an extension as a
Composer package.

1. Create a project for your extension and host it on a VCS repository,
such as github.com48. The development and maintenance work for the
extension should be done on this repository.

2. Under the root directory of the project, create a �le named composer.

json as required by Composer. Please refer to the next subsection for
more details.

3. Register your extension with a Composer repository, such as Pack-
agist49, so that other users can �nd and install your extension using
Composer.

composer.json

Each Composer package must have a composer.json �le in its root directory.
The �le contains the metadata about the package. You may �nd complete
speci�cation about this �le in the Composer Manual50. The following ex-
ample shows the composer.json �le for the yiisoft/yii2-imagine extension:

47https://getcomposer.org/
48https://github.com
49https://packagist.org/
50https://getcomposer.org/doc/01-basic-usage.md#composer-json-project-setup

https://getcomposer.org/
https://github.com
https://packagist.org/
https://getcomposer.org/doc/01-basic-usage.md#composer-json-project-setup

140 CHAPTER 3. APPLICATION STRUCTURE

{

// package name

"name": "yiisoft/yii2-imagine",

// package type

"type": "yii2-extension",

"description": "The Imagine integration for the Yii framework",

"keywords": ["yii2", "imagine", "image", "helper"],

"license": "BSD-3-Clause",

"support": {

"issues": "https://github.com/yiisoft/yii2/issues?labels=ext%3

Aimagine",

"forum": "http://www.yiiframework.com/forum/",

"wiki": "http://www.yiiframework.com/wiki/",

"irc": "irc://irc.freenode.net/yii",

"source": "https://github.com/yiisoft/yii2"

},

"authors": [

{

"name": "Antonio Ramirez",

"email": "amigo.cobos@gmail.com"

}

],

// package dependencies

"require": {

"yiisoft/yii2": "~2.0.0",

"imagine/imagine": "v0.5.0"

},

// class autoloading specs

"autoload": {

"psr-4": {

"yii\\imagine\\": ""

}

}

}

Package Name Each Composer package should have a package name
which uniquely identi�es the package among all others. The format of pack-
age names is vendorName/projectName. For example, in the package name
yiisoft/yii2-imagine, the vendor name and the project name are yiisoft and
yii2-imagine, respectively.

Do NOT use yiisoft as your vendor name as it is reserved for use by the
Yii core code.

We recommend you pre�x yii2- to the project name for packages rep-
resenting Yii 2 extensions, for example, myname/yii2-mywidget. This will allow
users to more easily tell whether a package is a Yii 2 extension.

3.12. EXTENSIONS 141

Package Type It is important that you specify the package type of your
extension as yii2-extension so that the package can be recognized as a Yii
extension when being installed.

When a user runs composer install to install an extension, the �le vendor

/yiisoft/extensions.php will be automatically updated to include the inform-
ation about the new extension. From this �le, Yii applications can know
which extensions are installed (the information can be accessed via yii\base
\Application::extensions).

Dependencies Your extension depends on Yii (of course). So you should
list it (yiisoft/yii2) in the require entry in composer.json. If your extension
also depends on other extensions or third-party libraries, you should list
them as well. Make sure you also list appropriate version constraints (e.g.
1.*, @stable) for each dependent package. Use stable dependencies when your
extension is released in a stable version.

Most JavaScript/CSS packages are managed using Bower51 and/or NPM52,
instead of Composer. Yii uses the Composer asset plugin53 to enable man-
aging these kinds of packages through Composer. If your extension depends
on a Bower package, you can simply list the dependency in composer.json like
the following:

{

// package dependencies

"require": {

"bower-asset/jquery": ">=1.11.*"

}

}

The above code states that the extension depends on the jquery Bower pack-
age. In general, you can use bower-asset/PackageName to refer to a Bower pack-
age in composer.json, and use npm-asset/PackageName to refer to a NPM package.
When Composer installs a Bower or NPM package, by default the package
content will be installed under the @vendor/bower/PackageName and @vendor/npm

/Packages directories, respectively. These two directories can also be referred
to using the shorter aliases @bower/PackageName and @npm/PackageName.

For more details about asset management, please refer to the Assets
section.

Class Autoloading In order for your classes to be autoloaded by the Yii
class autoloader or the Composer class autoloader, you should specify the
autoload entry in the composer.json �le, like shown below:

{

//

51http://bower.io/
52https://www.npmjs.org/
53https://github.com/francoispluchino/composer-asset-plugin

http://bower.io/
https://www.npmjs.org/
https://github.com/francoispluchino/composer-asset-plugin

142 CHAPTER 3. APPLICATION STRUCTURE

"autoload": {

"psr-4": {

"yii\\imagine\\": ""

}

}

}

You may list one or multiple root namespaces and their corresponding �le
paths.

When the extension is installed in an application, Yii will create for each
listed root namespace an alias that refers to the directory corresponding to
the namespace. For example, the above autoload declaration will correspond
to an alias named @yii/imagine.

Recommended Practices

Because extensions are meant to be used by other people, you often need to
make an extra e�ort during development. Below we introduce some common
and recommended practices in creating high quality extensions.

Namespaces To avoid name collisions and make the classes in your ex-
tension autoloadable, you should use namespaces and name the classes in
your extension by following the PSR-4 standard54 or PSR-0 standard55.

Your class namespaces should start with vendorName\extensionName, where
extensionName is similar to the project name in the package name except that
it should not contain the yii2- pre�x. For example, for the yiisoft/yii2-

imagine extension, we use yii\imagine as the namespace for its classes.
Do not use yii, yii2 or yiisoft as your vendor name. These names are

reserved for use by the Yii core code.

Bootstrapping Classes Sometimes, you may want your extension to
execute some code during the bootstrapping process stage of an applica-
tion. For example, your extension may want to respond to the application's
beginRequest event to adjust some environment settings. While you can in-
struct users of the extension to explicitly attach your event handler in the
extension to the beginRequest event, a better way is to do this automatically.

To achieve this goal, you can create a so-called bootstrapping class by
implementing yii\base\BootstrapInterface. For example,

namespace myname\mywidget;

use yii\base\BootstrapInterface;

use yii\base\Application;

54http://www.php-fig.org/psr/psr-4/
55http://www.php-fig.org/psr/psr-0/

http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-0/

3.12. EXTENSIONS 143

class MyBootstrapClass implements BootstrapInterface

{

public function bootstrap($app)

{

$app->on(Application::EVENT_BEFORE_REQUEST, function () {

// do something here

});

}

}

You then list this class in the composer.json �le of your extension like follows,

{

// ...

"extra": {

"bootstrap": "myname\\mywidget\\MyBootstrapClass"

}

}

When the extension is installed in an application, Yii will automatically in-
stantiate the bootstrapping class and call its yii\base\BootstrapInterface
::bootstrap() method during the bootstrapping process for every request.

Working with Databases Your extension may need to access databases.
Do not assume that the applications that use your extension will always use
Yii::$db as the DB connection. Instead, you should declare a db property
for the classes that require DB access. The property will allow users of your
extension to customize which DB connection they would like your extension
to use. As an example, you may refer to the yii\caching\DbCache class
and see how it declares and uses the db property.

If your extension needs to create speci�c DB tables or make changes to
DB schema, you should

• provide migrations to manipulate DB schema, rather than using plain
SQL �les;

• try to make the migrations applicable to di�erent DBMS;
• avoid using Active Record in the migrations.

Using Assets If your extension is a widget or a module, chances are that
it may require some assets to work. For example, a module may display
some pages which contain images, JavaScript, and CSS. Because the �les of
an extension are all under the same directory which is not Web accessible
when installed in an application, you have two choices to make the asset �les
directly accessible via Web:

• ask users of the extension to manually copy the asset �les to a speci�c
Web-accessible folder;

• declare an asset bundle and rely on the asset publishing mechanism

144 CHAPTER 3. APPLICATION STRUCTURE

to automatically copy the �les listed in the asset bundle to a Web-
accessible folder.

We recommend you use the second approach so that your extension can be
more easily used by other people. Please refer to the Assets section for more
details about how to work with assets in general.

Internationalization and Localization Your extension may be used
by applications supporting di�erent languages! Therefore, if your extension
displays content to end users, you should try to internationalize and localize
it. In particular,

• If the extension displays messages intended for end users, the messages
should be wrapped into Yii::t() so that they can be translated. Mes-
sages meant for developers (such as internal exception messages) do
not need to be translated.

• If the extension displays numbers, dates, etc., they should be formatted
using yii\i18n\Formatter with appropriate formatting rules.

For more details, please refer to the Internationalization section.

Testing You want your extension to run �awlessly without bringing prob-
lems to other people. To reach this goal, you should test your extension
before releasing it to public.

It is recommended that you create various test cases to cover your exten-
sion code rather than relying on manual tests. Each time before you release
a new version of your extension, you may simply run these test cases to make
sure everything is in good shape. Yii provides testing support, which can
help you to more easily write unit tests, acceptance tests and functionality
tests. For more details, please refer to the Testing section.

Versioning You should give each release of your extension a version num-
ber (e.g. 1.0.1). We recommend you follow the semantic versioning56 prac-
tice when determining what version numbers should be used.

Releasing To let other people know about your extension, you need to
release it to the public.

If it is the �rst time you are releasing an extension, you should register
it on a Composer repository, such as Packagist57. After that, all you need
to do is simply create a release tag (e.g. v1.0.1) on the VCS repository of
your extension and notify the Composer repository about the new release.
People will then be able to �nd the new release, and install or update the
extension through the Composer repository.

56http://semver.org
57https://packagist.org/

http://semver.org
https://packagist.org/

3.12. EXTENSIONS 145

In the releases of your extension, in addition to code �les, you should
also consider including the following to help other people learn about and
use your extension:

• A readme �le in the package root directory: it describes what your
extension does and how to install and use it. We recommend you write
it in Markdown58 format and name the �le as readme.md.

• A changelog �le in the package root directory: it lists what changes
are made in each release. The �le may be written in Markdown format
and named as changelog.md.

• An upgrade �le in the package root directory: it gives the instructions
on how to upgrade from older releases of the extension. The �le may
be written in Markdown format and named as upgrade.md.

• Tutorials, demos, screenshots, etc.: these are needed if your extension
provides many features that cannot be fully covered in the readme �le.

• API documentation: your code should be well documented to allow
other people to more easily read and understand it. You may refer to
the Object class �le59 to learn how to document your code.

Info: Your code comments can be written in Markdown format.
The yiisoft/yii2-apidoc extension provides a tool for you to gen-
erate pretty API documentation based on your code comments.

Info: While not a requirement, we suggest your extension adhere
to certain coding styles. You may refer to the core framework
code style60.

3.12.3 Core Extensions

Yii provides the following core extensions that are developed and maintained
by the Yii developer team. They are all registered on Packagist61 and can
be easily installed as described in the Using Extensions subsection.

• yiisoft/yii2-apidoc62: provides an extensible and high-performance API
documentation generator. It is also used to generate the core frame-
work API documentation.

• yiisoft/yii2-authclient63: provides a set of commonly used auth clients,
such as Facebook OAuth2 client, GitHub OAuth2 client.

• yiisoft/yii2-bootstrap64: provides a set of widgets that encapsulate the
Bootstrap65 components and plugins.

58http://daringfireball.net/projects/markdown/
59https://github.com/yiisoft/yii2/blob/master/framework/base/Object.php
60https://github.com/yiisoft/yii2/wiki/Core-framework-code-style
61https://packagist.org/
62https://github.com/yiisoft/yii2-apidoc
63https://github.com/yiisoft/yii2-authclient
64https://github.com/yiisoft/yii2-bootstrap
65http://getbootstrap.com/

http://daringfireball.net/projects/markdown/
https://github.com/yiisoft/yii2/blob/master/framework/base/Object.php
https://github.com/yiisoft/yii2/wiki/Core-framework-code-style
https://packagist.org/
https://github.com/yiisoft/yii2-apidoc
https://github.com/yiisoft/yii2-authclient
https://github.com/yiisoft/yii2-bootstrap
http://getbootstrap.com/

146 CHAPTER 3. APPLICATION STRUCTURE

• yiisoft/yii2-codeception66: provides testing support based on Codecep-
tion67.

• yiisoft/yii2-debug68: provides debugging support for Yii applications.
When this extension is used, a debugger toolbar will appear at the
bottom of every page. The extension also provides a set of standalone
pages to display more detailed debug information.

• yiisoft/yii2-elasticsearch69: provides the support for using Elasticsearch70.
It includes basic querying/search support and also implements the Act-
ive Record pattern that allows you to store active records in Elastic-
search.

• yiisoft/yii2-faker71: provides the support for using Faker72 to generate
fake data for you.

• yiisoft/yii2-gii73: provides a Web-based code generator that is highly
extensible and can be used to quickly generate models, forms, modules,
CRUD, etc.

• yiisoft/yii2-httpclient74: provides an HTTP client.
• yiisoft/yii2-imagine75: provides commonly used image manipulation
functions based on Imagine76.

• yiisoft/yii2-jui77: provides a set of widgets that encapsulate the JQuery
UI78 interactions and widgets.

• yiisoft/yii2-mongodb79: provides the support for using MongoDB80.
It includes features such as basic query, Active Record, migrations,
caching, code generation, etc.

• yiisoft/yii2-redis81: provides the support for using redis82. It includes
features such as basic query, Active Record, caching, etc.

• yiisoft/yii2-smarty83: provides a template engine based on Smarty84.

66https://github.com/yiisoft/yii2-codeception
67http://codeception.com/
68https://github.com/yiisoft/yii2-debug
69https://github.com/yiisoft/yii2-elasticsearch
70http://www.elasticsearch.org/
71https://github.com/yiisoft/yii2-faker
72https://github.com/fzaninotto/Faker
73https://github.com/yiisoft/yii2-gii
74https://github.com/yiisoft/yii2-httpclient
75https://github.com/yiisoft/yii2-imagine
76http://imagine.readthedocs.org/
77https://github.com/yiisoft/yii2-jui
78http://jqueryui.com/
79https://github.com/yiisoft/yii2-mongodb
80http://www.mongodb.org/
81https://github.com/yiisoft/yii2-redis
82http://redis.io/
83https://github.com/yiisoft/yii2-smarty
84http://www.smarty.net/

https://github.com/yiisoft/yii2-codeception
http://codeception.com/
https://github.com/yiisoft/yii2-debug
https://github.com/yiisoft/yii2-elasticsearch
http://www.elasticsearch.org/
https://github.com/yiisoft/yii2-faker
https://github.com/fzaninotto/Faker
https://github.com/yiisoft/yii2-gii
https://github.com/yiisoft/yii2-httpclient
https://github.com/yiisoft/yii2-imagine
http://imagine.readthedocs.org/
https://github.com/yiisoft/yii2-jui
http://jqueryui.com/
https://github.com/yiisoft/yii2-mongodb
http://www.mongodb.org/
https://github.com/yiisoft/yii2-redis
http://redis.io/
https://github.com/yiisoft/yii2-smarty
http://www.smarty.net/

3.12. EXTENSIONS 147

• yiisoft/yii2-sphinx85: provides the support for using Sphinx86. It in-
cludes features such as basic query, Active Record, code generation,
etc.

• yiisoft/yii2-swiftmailer87: provides email sending features based on
swiftmailer88.

• yiisoft/yii2-twig89: provides a template engine based on Twig90.

85https://github.com/yiisoft/yii2-sphinx
86http://sphinxsearch.com
87https://github.com/yiisoft/yii2-swiftmailer
88http://swiftmailer.org/
89https://github.com/yiisoft/yii2-twig
90http://twig.sensiolabs.org/

https://github.com/yiisoft/yii2-sphinx
http://sphinxsearch.com
https://github.com/yiisoft/yii2-swiftmailer
http://swiftmailer.org/
https://github.com/yiisoft/yii2-twig
http://twig.sensiolabs.org/

148 CHAPTER 3. APPLICATION STRUCTURE

Chapter 4

Handling Requests

4.1 Overview

Each time when a Yii application handles a request, it undergoes a similar
work�ow.

1. A user makes a request to the entry script web/index.php.

2. The entry script loads the application con�guration and creates an
application instance to handle the request.

3. The application resolves the requested route with the help of the re-
quest application component.

4. The application creates a controller instance to handle the request.

5. The controller creates an action instance and performs the �lters for
the action.

6. If any �lter fails, the action is cancelled.

7. If all �lters pass, the action is executed.

8. The action loads a data model, possibly from a database.

9. The action renders a view, providing it with the data model.

10. The rendered result is returned to the response application component.

11. The response component sends the rendered result to the user's browser.

The following diagram shows how an application handles a request.

149

150 CHAPTER 4. HANDLING REQUESTS

In this section, we will describe in detail how some of these steps work.

4.2 Bootstrapping

Bootstrapping refers to the process of preparing the environment before an
application starts to resolve and process an incoming request. Bootstrapping
is done in two places: the entry script and the application.

In the entry script, class autoloaders for di�erent libraries are registered.
This includes the Composer autoloader through its autoload.php �le and the
Yii autoloader through its Yii class �le. The entry script then loads the
application con�guration and creates an application instance.

In the constructor of the application, the following bootstrapping work
is done:

1. yii\base\Application::preInit() is called, which con�gures some
high priority application properties, such as yii\base\Application::
basePath.

2. Register the yii\base\Application::errorHandler.

3. Initialize application properties using the given application con�gura-
tion.

4. yii\base\Application::init() is called which in turn calls yii\base
\Application::bootstrap() to run bootstrapping components.

4.3. ROUTING AND URL CREATION 151

• Include the extension manifest �le vendor/yiisoft/extensions.php.
• Create and run bootstrap components declared by extensions.
• Create and run application components and/or modules that are
declared in the application's bootstrap property.

Because the bootstrapping work has to be done before handling every re-
quest, it is very important to keep this process light and optimize it as much
as possible.

Try not to register too many bootstrapping components. A bootstrap-
ping component is needed only if it wants to participate the whole life cycle
of requesting handling. For example, if a module needs to register additional
URL parsing rules, it should be listed in the bootstrap property so that the
new URL rules can take e�ect before they are used to resolve requests.

In production mode, enable a bytecode cache, such as PHP OPcache1 or
APC2, to minimize the time needed for including and parsing PHP �les.

Some large applications have very complex application con�gurations
which are divided into many smaller con�guration �les. If this is the case,
consider caching the whole con�guration array and loading it directly from
cache before creating the application instance in the entry script.

4.3 Routing and URL Creation

When a Yii application starts processing a requested URL, the �rst step it
takes is to parse the URL into a route. The route is then used to instantiate
the corresponding controller action to handle the request. This whole process
is called routing.

The reverse process of routing is called URL creation, which creates a
URL from a given route and the associated query parameters. When the
created URL is later requested, the routing process can resolve it back into
the original route and query parameters.

The central piece responsible for routing and URL creation is the yii\web
\UrlManager, which is registered as the urlManager application component.
The yii\web\UrlManager provides the yii\web\UrlManager::parseRequest()
method to parse an incoming request into a route and the associated query
parameters and the yii\web\UrlManager::createUrl() method to create
a URL from a given route and its associated query parameters.

By con�guring the urlManager component in the application con�gura-
tion, you can let your application recognize arbitrary URL formats without
modifying your existing application code. For example, you can use the
following code to create a URL for the post/view action:

use yii\helpers\Url;

1http://php.net/manual/en/intro.opcache.php
2http://php.net/manual/en/book.apc.php

http://php.net/manual/en/intro.opcache.php
http://php.net/manual/en/book.apc.php

152 CHAPTER 4. HANDLING REQUESTS

// Url::to() calls UrlManager::createUrl() to create a URL

$url = Url::to(['post/view', 'id' => 100]);

Depending on the urlManager con�guration, the created URL may look like
one of the following (or other format). And if the created URL is requested
later, it will still be parsed back into the original route and query parameter
value.

/index.php?r=post%2Fview&id=100

/index.php/post/100

/posts/100

4.3.1 URL Formats

The yii\web\UrlManager supports two URL formats:

• the default URL format;
• the pretty URL format.

The default URL format uses a yii\web\UrlManager::$routeParam named
r to represent the route and normal query parameters to represent the query
parameters associated with the route. For example, the URL /index.php?r=

post/view&id=100 represents the route post/view and the id query parameter
100. The default URL format does not require any con�guration of the yii

\web\UrlManager and works in any Web server setup.

The pretty URL format uses the extra path following the entry script
name to represent the route and the associated query parameters. For ex-
ample, the extra path in the URL /index.php/post/100 is /post/100 which
may represent the route post/view and the id query parameter 100 with a
proper yii\web\UrlManager::rules. To use the pretty URL format, you
will need to design a set of yii\web\UrlManager::rules according to the
actual requirement about how the URLs should look like.

You may switch between the two URL formats by toggling the yii

\web\UrlManager::enablePrettyUrl property of the yii\web\UrlManager
without changing any other application code.

4.3.2 Routing

Routing involves two steps:

• the incoming request is parsed into a route and the associated query
parameters;

• a controller action corresponding to the parsed route is created to
handle the request.

When using the default URL format, parsing a request into a route is as
simple as getting the value of a GET query parameter named r.

When using the pretty URL format, the yii\web\UrlManager will exam-
ine the registered yii\web\UrlManager::rules to �nd matching one that

4.3. ROUTING AND URL CREATION 153

can resolve the request into a route. If such a rule cannot be found, a yii

\web\NotFoundHttpException exception will be thrown.

Once the request is parsed into a route, it is time to create the controller
action identi�ed by the route. The route is broken down into multiple parts
by the slashes in it. For example, site/index will be broken into site and
index. Each part is an ID which may refer to a module, a controller or an
action. Starting from the �rst part in the route, the application takes the
following steps to create modules (if any), controller and action:

1. Set the application as the current module.

2. Check if the yii\base\Module::controllerMap of the current mod-
ule contains the current ID. If so, a controller object will be created
according to the controller con�guration found in the map, and Step 5
will be taken to handle the rest part of the route.

3. Check if the ID refers to a module listed in the yii\base\Module::

modules property of the current module. If so, a module is created
according to the con�guration found in the module list, and Step 2
will be taken to handle the next part of the route under the context of
the newly created module.

4. Treat the ID as a controller ID and create a controller object. Do the
next step with the rest part of the route.

5. The controller looks for the current ID in its yii\base\Controller::
actions(). If found, it creates an action according to the con�guration
found in the map. Otherwise, the controller will attempt to create an
inline action which is de�ned by an action method corresponding to
the current action ID.

Among the above steps, if any error occurs, a yii\web\NotFoundHttpException
will be thrown, indicating the failure of the routing process.

Default Route

When a request is parsed into an empty route, the so-called default route will
be used, instead. By default, the default route is site/index, which refers to
the index action of the site controller. You may customize it by con�guring
the yii\web\Application::defaultRoute property of the application in
the application con�guration like the following:

[

// ...

'defaultRoute' => 'main/index',

];

154 CHAPTER 4. HANDLING REQUESTS

Similar to the default route of the application, there is also a default route
for modules, so for example if there is a user module and the request is
parsed into the route user the module's yii\base\Module::defaultRoute

is used to determine the controller. By default the controller name is default

. If no action is speci�ed in yii\base\Module::defaultRoute, the yii

\base\Controller::defaultAction property of the controller is used to
determine the action. In this example, the full route would be user/default/

index.

catchAll Route

Sometimes, you may want to put your Web application in maintenance mode
temporarily and display the same informational page for all requests. There
are many ways to accomplish this goal. But one of the simplest ways is to
con�gure the yii\web\Application::catchAll property like the following
in the application con�guration:

[

// ...

'catchAll' => ['site/offline'],

];

With the above con�guration, the site/offline action will be used to handle
all incoming requests.

The catchAll property should take an array whose �rst element speci�es a
route, and the rest of the elements (name-value pairs) specify the parameters
to be bound to the action.

Info: The debug toolbar3 in development environment will not
work when this property is enabled.

4.3.3 Creating URLs

Yii provides a helper method yii\helpers\Url::to() to create various
kinds of URLs from given routes and their associated query parameters.
For example,

use yii\helpers\Url;

// creates a URL to a route: /index.php?r=post%2Findex

echo Url::to(['post/index']);

// creates a URL to a route with parameters: /index.php?r=post%2Fview&id=100

echo Url::to(['post/view', 'id' => 100]);

// creates an anchored URL: /index.php?r=post%2Fview&id=100#content

echo Url::to(['post/view', 'id' => 100, '#' => 'content']);

3https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md

https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md

4.3. ROUTING AND URL CREATION 155

// creates an absolute URL: http://www.example.com/index.php?r=post%2Findex

echo Url::to(['post/index'], true);

// creates an absolute URL using the https scheme: https://www.example.com/

index.php?r=post%2Findex

echo Url::to(['post/index'], 'https');

Note that in the above example, we assume the default URL format is being
used. If the pretty URL format is enabled, the created URLs will be di�erent,
according to the yii\web\UrlManager::rules in use.

The route passed to the yii\helpers\Url::to()method is context sens-
itive. It can be either a relative route or an absolute route which will be
normalized according to the following rules:

• If the route is an empty string, the currently requested yii\web\Controller
::route will be used;

• If the route contains no slashes at all, it is considered to be an action
ID of the current controller and will be prepended with the \yii\web
\Controller::uniqueId value of the current controller;

• If the route has no leading slash, it is considered to be a route relative to
the current module and will be prepended with the \yii\base\Module
::uniqueId value of the current module.

Starting from version 2.0.2, you may specify a route in terms of an alias. If
this is the case, the alias will �rst be converted into the actual route which
will then be turned into an absolute route according to the above rules.

For example, assume the current module is admin and the current con-
troller is post,

use yii\helpers\Url;

// currently requested route: /index.php?r=admin%2Fpost%2Findex

echo Url::to(['']);

// a relative route with action ID only: /index.php?r=admin%2Fpost%2Findex

echo Url::to(['index']);

// a relative route: /index.php?r=admin%2Fpost%2Findex

echo Url::to(['post/index']);

// an absolute route: /index.php?r=post%2Findex

echo Url::to(['/post/index']);

// using an alias "@posts", which is defined as "/post/index": /index.php?r=

post%2Findex

echo Url::to(['@posts']);

The yii\helpers\Url::to()method is implemented by calling the yii\web
\UrlManager::createUrl() and yii\web\UrlManager::createAbsoluteUrl()
methods of the yii\web\UrlManager. In the next few subsections, we will
explain how to con�gure the yii\web\UrlManager to customize the format
of the created URLs.

156 CHAPTER 4. HANDLING REQUESTS

The yii\helpers\Url::to() method also supports creating URLs that
are not related with particular routes. Instead of passing an array as its �rst
parameter, you should pass a string in this case. For example,

use yii\helpers\Url;

// currently requested URL: /index.php?r=admin%2Fpost%2Findex

echo Url::to();

// an aliased URL: http://example.com

Yii::setAlias('@example', 'http://example.com/');

echo Url::to('@example');

// an absolute URL: http://example.com/images/logo.gif

echo Url::to('/images/logo.gif', true);

Besides the to() method, the yii\helpers\Url helper class also provides
several other convenient URL creation methods. For example,

use yii\helpers\Url;

// home page URL: /index.php?r=site%2Findex

echo Url::home();

// the base URL, useful if the application is deployed in a sub-folder of

the Web root

echo Url::base();

// the canonical URL of the currently requested URL

// see https://en.wikipedia.org/wiki/Canonical_link_element

echo Url::canonical();

// remember the currently requested URL and retrieve it back in later

requests

Url::remember();

echo Url::previous();

4.3.4 Using Pretty URLs

To use pretty URLs, con�gure the urlManager component in the application
con�guration like the following:

[

'components' => [

'urlManager' => [

'enablePrettyUrl' => true,

'showScriptName' => false,

'enableStrictParsing' => false,

'rules' => [

// ...

],

],

],

]

4.3. ROUTING AND URL CREATION 157

The yii\web\UrlManager::enablePrettyUrl property is mandatory as it
toggles the pretty URL format. The rest of the properties are optional.
However, their con�guration shown above is most commonly used.

• yii\web\UrlManager::showScriptName: this property determines whether
the entry script should be included in the created URLs. For example,
instead of creating a URL /index.php/post/100, by setting this property
to be false, a URL /post/100 will be generated.

• yii\web\UrlManager::enableStrictParsing: this property determ-
ines whether to enable strict request parsing. If strict parsing is en-
abled, the incoming requested URL must match at least one of the
yii\web\UrlManager::rules in order to be treated as a valid request,
otherwise a yii\web\NotFoundHttpException will be thrown. If strict
parsing is disabled, when none of the yii\web\UrlManager::rules

matches the requested URL, the path info part of the URL will be
treated as the requested route.

• yii\web\UrlManager::rules: this property contains a list of rules
specifying how to parse and create URLs. It is the main property that
you should work with in order to create URLs whose format satis�es
your particular application requirement.

Note: In order to hide the entry script name in the created
URLs, besides setting yii\web\UrlManager::showScriptName

to be false, you may also need to con�gure your Web server so
that it can correctly identify which PHP script should be ex-
ecuted when a requested URL does not explicitly specify one.
If you are using Apache or nginx Web server, you may refer to
the recommended con�guration as described in the Installation
section.

URL Rules

A URL rule is a class implementing the yii\web\UrlRuleInterface, usually
yii\web\UrlRule. Each URL rule consists of a pattern used for matching
the path info part of URLs, a route, and a few query parameters. A URL
rule can be used to parse a request if its pattern matches the requested URL.
A URL rule can be used to create a URL if its route and query parameter
names match those that are given.

When the pretty URL format is enabled, the yii\web\UrlManager uses
the URL rules declared in its yii\web\UrlManager::rules property to parse
incoming requests and create URLs. In particular, to parse an incoming
request, the yii\web\UrlManager examines the rules in the order they are
declared and looks for the �rst rule that matches the requested URL. The
matching rule is then used to parse the URL into a route and its associated
parameters. Similarly, to create a URL, the yii\web\UrlManager looks for

158 CHAPTER 4. HANDLING REQUESTS

the �rst rule that matches the given route and parameters and uses that to
create a URL.

You can con�gure yii\web\UrlManager::rules as an array with keys
being the yii\web\UrlRule::$pattern and values the corresponding yii

\web\UrlRule::$route. Each pattern-route pair constructs a URL rule. For
example, the following yii\web\UrlManager::rules con�guration declares
two URL rules. The �rst rule matches a URL posts and maps it into the route
post/index. The second rule matches a URL matching the regular expression
post/(\d+) and maps it into the route post/view and de�nes a query parameter
named id.

'rules' => [

'posts' => 'post/index',

'post/<id:\d+>' => 'post/view',

]

Info: The pattern in a rule is used to match the path info part of
a URL. For example, the path info of /index.php/post/100?source=
ad is post/100 (the leading and ending slashes are ignored) which
matches the pattern post/(\d+).

Besides declaring URL rules as pattern-route pairs, you may also declare
them as con�guration arrays. Each con�guration array is used to con�gure
a single URL rule object. This is often needed when you want to con�gure
other properties of a URL rule. For example,

'rules' => [

// ...other url rules...

[

'pattern' => 'posts',

'route' => 'post/index',

'suffix' => '.json',

],

]

By default if you do not specify the class option for a rule con�guration,
it will take the default class yii\web\UrlRule, which is the default value
de�ned in yii\web\UrlManager::$ruleConfig.

Named Parameters

A URL rule can be associated with named query parameters which are spe-
ci�ed in the pattern in the format of <ParamName:RegExp>, where ParamName

speci�es the parameter name and RegExp is an optional regular expression
used to match parameter values. If RegExp is not speci�ed, it means the
parameter value should be a string without any slash.

Note: You can only use regular expressions inside of parameters.
The rest of a pattern is considered plain text.

4.3. ROUTING AND URL CREATION 159

When a rule is used to parse a URL, it will �ll the associated parameters with
values matching the corresponding parts of the URL, and these parameters
will be made available in $_GET later by the request application component.
When the rule is used to create a URL, it will take the values of the provided
parameters and insert them at the places where the parameters are declared.

Let's use some examples to illustrate how named parameters work. As-
sume we have declared the following three URL rules:

'rules' => [

'posts/<year:\d{4}>/<category>' => 'post/index',

'posts' => 'post/index',

'post/<id:\d+>' => 'post/view',

]

When the rules are used to parse URLs:

• /index.php/posts is parsed into the route post/index using the second
rule;

• /index.php/posts/2014/php is parsed into the route post/index, the year

parameter whose value is 2014 and the category parameter whose value
is php using the �rst rule;

• /index.php/post/100 is parsed into the route post/view and the id para-
meter whose value is 100 using the third rule;

• /index.php/posts/php will cause a yii\web\NotFoundHttpException when
yii\web\UrlManager::enableStrictParsing is true, because it matches
none of the patterns. If yii\web\UrlManager::enableStrictParsing
is false (the default value), the path info part posts/php will be returned
as the route. This will either execute the corresponding action if it ex-
ists or throw a yii\web\NotFoundHttpException otherwise.

And when the rules are used to create URLs:

• Url::to(['post/index']) creates /index.php/posts using the second rule;
• Url::to(['post/index', 'year' => 2014, 'category' => 'php']) creates /

index.php/posts/2014/php using the �rst rule;
• Url::to(['post/view', 'id' => 100]) creates /index.php/post/100 using the
third rule;

• Url::to(['post/view', 'id' => 100, 'source' => 'ad']) creates /index.php
/post/100?source=ad using the third rule. Because the source parameter
is not speci�ed in the rule, it is appended as a query parameter in the
created URL.

• Url::to(['post/index', 'category' => 'php']) creates /index.php/post/index
?category=php using none of the rules. Note that since none of the rules
applies, the URL is created by simply appending the route as the path
info and all parameters as the query string part.

160 CHAPTER 4. HANDLING REQUESTS

Parameterizing Routes

You can embed parameter names in the route of a URL rule. This allows a
URL rule to be used for matching multiple routes. For example, the following
rules embed controller and action parameters in the routes.

'rules' => [

'<controller:(post|comment)>/create' => '<controller>/create',

'<controller:(post|comment)>/<id:\d+>/<action:(update|delete)>' => '<

controller>/<action>',

'<controller:(post|comment)>/<id:\d+>' => '<controller>/view',

'<controller:(post|comment)>s' => '<controller>/index',

]

To parse a URL /index.php/comment/100/update, the second rule will apply,
which sets the controller parameter to be comment and action parameter to
be update. The route <controller>/<action> is thus resolved as comment/update.

Similarly, to create a URL for the route comment/index, the last rule will
apply, which creates a URL /index.php/comments.

Info: By parameterizing routes, it is possible to greatly reduce
the number of URL rules, which can signi�cantly improve the
performance of yii\web\UrlManager.

Default Parameter Values

By default, all parameters declared in a rule are required. If a requested
URL does not contain a particular parameter, or if a URL is being created
without a particular parameter, the rule will not apply. To make some of
the parameters optional, you can con�gure the yii\web\UrlRule::defaults
property of a rule. Parameters listed in this property are optional and will
take the speci�ed values when they are not provided.

In the following rule declaration, the page and tag parameters are both
optional and will take the value of 1 and empty string, respectively, when
they are not provided.

'rules' => [

// ...other rules...

[

'pattern' => 'posts/<page:\d+>/<tag>',

'route' => 'post/index',

'defaults' => ['page' => 1, 'tag' => ''],

],

]

The above rule can be used to parse or create any of the following URLs:
• /index.php/posts: page is 1, tag is `'.
• /index.php/posts/2: page is 2, tag is `'.
• /index.php/posts/2/news: page is 2, tag is 'news'.
• /index.php/posts/news: page is 1, tag is 'news'.

4.3. ROUTING AND URL CREATION 161

Without using optional parameters, you would have to create 4 rules to
achieve the same result.

Rules with Server Names

It is possible to include Web server names in the patterns of URL rules.
This is mainly useful when your application should behave di�erently for
di�erent Web server names. For example, the following rules will parse the
URL http://admin.example.com/login into the route admin/user/login and http

://www.example.com/login into site/login.

'rules' => [

'http://admin.example.com/login' => 'admin/user/login',

'http://www.example.com/login' => 'site/login',

]

You can also embed parameters in the server names to extract dynamic in-
formation from them. For example, the following rule will parse the URL http

://en.example.com/posts into the route post/index and the parameter language

=en.

'rules' => [

'http://<language:\w+>.example.com/posts' => 'post/index',

]

Since version 2.0.11, you may also use protocol relative patterns that work
for both, http and https. The syntax is the same as above but skipping the
http: part, e.g.: '//www.example.com/login' => 'site/login'.

Note: Rules with server names should not include the subfolder
of the entry script in their patterns. For example, if the applica-
tions entry script is at http://www.example.com/sandbox/blog/index.
php, then you should use the pattern http://www.example.com/posts

instead of http://www.example.com/sandbox/blog/posts. This will al-
low your application to be deployed under any directory without
the need to change your url rules. Yii will automatically detect
the base url of the application.

URL Su�xes

You may want to add su�xes to the URLs for various purposes. For ex-
ample, you may add .html to the URLs so that they look like URLs for
static HTML pages; you may also add .json to the URLs to indicate the
expected content type of the response. You can achieve this goal by con�g-
uring the yii\web\UrlManager::suffix property like the following in the
application con�guration:

[

// ...

162 CHAPTER 4. HANDLING REQUESTS

'components' => [

'urlManager' => [

'enablePrettyUrl' => true,

// ...

'suffix' => '.html',

'rules' => [

// ...

],

],

],

]

The above con�guration will allow the yii\web\UrlManager to recognize
requested URLs and also create URLs with .html as their su�x.

Tip: You may set / as the URL su�x so that the URLs all end
with a slash.

Note: When you con�gure a URL su�x, if a requested URL
does not have the su�x, it will be considered as an unrecognized
URL. This is a recommended practice for SEO (search engine
optimization) to avoid duplicate content on di�erent URLs.

Sometimes you may want to use di�erent su�xes for di�erent URLs. This
can be achieved by con�guring the yii\web\UrlRule::suffix property of
individual URL rules. When a URL rule has this property set, it will over-
ride the su�x setting at the yii\web\UrlManager level. For example, the
following con�guration contains a customized URL rule which uses .json as
its su�x instead of the global .html su�x.

[

'components' => [

'urlManager' => [

'enablePrettyUrl' => true,

// ...

'suffix' => '.html',

'rules' => [

// ...

[

'pattern' => 'posts',

'route' => 'post/index',

'suffix' => '.json',

],

],

],

],

]

HTTP Methods

When implementing RESTful APIs, it is commonly needed that the same
URL be parsed into di�erent routes according to the HTTP methods being

4.3. ROUTING AND URL CREATION 163

used. This can be easily achieved by pre�xing the supported HTTP methods
to the patterns of the rules. If a rule supports multiple HTTP methods,
separate the method names with commas. For example, the following rules
have the same pattern post/<id:\d+> with di�erent HTTP method support.
A request for PUT post/100 will be parsed into post/update, while a request for
GET post/100 will be parsed into post/view.

'rules' => [

'PUT,POST post/<id:\d+>' => 'post/update',

'DELETE post/<id:\d+>' => 'post/delete',

'post/<id:\d+>' => 'post/view',

]

Note: If a URL rule contains HTTP method(s) in its pat-
tern, the rule will only be used for parsing purpose unless GET

is among the speci�ed verbs. It will be skipped when the yii

\web\UrlManager is called to create URLs.

Tip: To simplify the routing of RESTful APIs, Yii provides a
special URL rule class yii\rest\UrlRule which is very e�cient
and supports some fancy features such as automatic pluralization
of controller IDs. For more details, please refer to the Routing
section in the RESTful APIs chapter.

Adding Rules Dynamically

URL rules can be dynamically added to the yii\web\UrlManager. This
is often needed by redistributable modules which want to manage their
own URL rules. In order for the dynamically added rules to take e�ect
during the routing process, you should add them during the bootstrap-
ping stage of the application. For modules, this means they should im-
plement yii\base\BootstrapInterface and add the rules in the yii\base
\BootstrapInterface::bootstrap() method like the following:

public function bootstrap($app)

{

$app->getUrlManager()->addRules([

// rule declarations here

], false);

}

Note that you should also list these modules in yii\web\Application::

bootstrap so that they can participate the bootstrapping process.

Creating Rule Classes

Despite the fact that the default yii\web\UrlRule class is �exible enough
for the majority of projects, there are situations when you have to create

164 CHAPTER 4. HANDLING REQUESTS

your own rule classes. For example, in a car dealer Web site, you may want
to support the URL format like /Manufacturer/Model, where both Manufacturer

and Model must match some data stored in a database table. The default
rule class will not work here because it relies on statically declared patterns.

We can create the following URL rule class to solve this problem.

<?php

namespace app\components;

use yii\web\UrlRuleInterface;

use yii\base\Object;

class CarUrlRule extends Object implements UrlRuleInterface

{

public function createUrl($manager, $route, $params)

{

if ($route === 'car/index') {

if (isset($params['manufacturer'], $params['model'])) {

return $params['manufacturer'] . '/' . $params['model'];

} elseif (isset($params['manufacturer'])) {

return $params['manufacturer'];

}

}

return false; // this rule does not apply

}

public function parseRequest($manager, $request)

{

$pathInfo = $request->getPathInfo();

if (preg_match('%^(\w+)(/(\w+))?$%', $pathInfo, $matches)) {

// check $matches[1] and $matches[3] to see

// if they match a manufacturer and a model in the database.

// If so, set $params['manufacturer'] and/or $params['model']

// and return ['car/index', $params]

}

return false; // this rule does not apply

}

}

And use the new rule class in the yii\web\UrlManager::rules con�gura-
tion:

'rules' => [

// ...other rules...

[

'class' => 'app\components\CarUrlRule',

// ...configure other properties...

],

]

4.3. ROUTING AND URL CREATION 165

4.3.5 URL normalization

Since version 2.0.10 yii\web\UrlManager can be con�gured to use yii\web
\UrlNormalizer for dealing with variations of the same URL, for example
with and without a trailing slash. Because technically http://example.com/

path and http://example.com/path/ are di�erent URLs, serving the same con-
tent for both of them can degrade SEO ranking. By default normalizer
collapses consecutive slashes, adds or removes trailing slashes depending on
whether the su�x has a trailing slash or not, and redirects to the normal-
ized version of the URL using permanent redirection4. The normalizer can
be con�gured globally for the URL manager or individually for each rule -
by default each rule will use the normalizer from URL manager. You can
set yii\web\UrlRule::$normalizer to false to disable normalization for
particular URL rule.

The following shows an example con�guration for the yii\web\UrlNormalizer:

'urlManager' => [

'enablePrettyUrl' => true,

'showScriptName' => false,

'enableStrictParsing' => true,

'suffix' => '.html',

'normalizer' => [

'class' => 'yii\web\UrlNormalizer',

// use temporary redirection instead of permanent for debugging

'action' => UrlNormalizer::ACTION_REDIRECT_TEMPORARY,

],

'rules' => [

// ...other rules...

[

'pattern' => 'posts',

'route' => 'post/index',

'suffix' => '/',

'normalizer' => false, // disable normalizer for this rule

],

[

'pattern' => 'tags',

'route' => 'tag/index',

'normalizer' => [

// do not collapse consecutive slashes for this rule

'collapseSlashes' => false,

],

],

],

]

Note: by default yii\web\UrlManager::$normalizer is dis-
abled. You need to explicitly con�gure it in order to enable URL
normalization.

4https://en.wikipedia.org/wiki/HTTP_301

https://en.wikipedia.org/wiki/HTTP_301

166 CHAPTER 4. HANDLING REQUESTS

4.3.6 Performance Considerations

When developing a complex Web application, it is important to optimize
URL rules so that it takes less time to parse requests and create URLs.

By using parameterized routes, you may reduce the number of URL rules,
which can signi�cantly improve performance.

When parsing or creating URLs, yii\web\UrlManager examines URL
rules in the order they are declared. Therefore, you may consider adjusting
the order of the URL rules so that more speci�c and/or more commonly used
rules are placed before less used ones.

If some URL rules share the same pre�x in their patterns or routes,
you may consider using yii\web\GroupUrlRule so that they can be more
e�ciently examined by yii\web\UrlManager as a group. This is often the
case when your application is composed by modules, each having its own set
of URL rules with module ID as their common pre�xes.

4.4 Requests

Requests made to an application are represented in terms of yii\web\Request
objects which provide information such as request parameters, HTTP head-
ers, cookies, etc. For a given request, you can get access to the corresponding
request object via the request application component which is an instance of
yii\web\Request, by default. In this section, we will describe how you can
make use of this component in your applications.

4.4.1 Request Parameters

To get request parameters, you can call yii\web\Request::get() and yii

\web\Request::post() methods of the request component. They return the
values of $_GET and $_POST, respectively. For example,

$request = Yii::$app->request;

$get = $request->get();

// equivalent to: $get = $_GET;

$id = $request->get('id');

// equivalent to: $id = isset($_GET['id']) ? $_GET['id'] : null;

$id = $request->get('id', 1);

// equivalent to: $id = isset($_GET['id']) ? $_GET['id'] : 1;

$post = $request->post();

// equivalent to: $post = $_POST;

$name = $request->post('name');

// equivalent to: $name = isset($_POST['name']) ? $_POST['name'] : null;

4.4. REQUESTS 167

$name = $request->post('name', '');

// equivalent to: $name = isset($_POST['name']) ? $_POST['name'] : '';

Info: Instead of directly accessing $_GET and $_POST to retrieve
the request parameters, it is recommended that you get them via
the request component as shown above. This will make writing
tests easier because you can create a mock request component
with faked request data.

When implementing RESTful APIs, you often need to retrieve parameters
that are submitted via PUT, PATCH or other request methods. You can get
these parameters by calling the yii\web\Request::getBodyParam() meth-
ods. For example,

$request = Yii::$app->request;

// returns all parameters

$params = $request->bodyParams;

// returns the parameter "id"

$param = $request->getBodyParam('id');

Info: Unlike GET parameters, parameters submitted via POST, PUT,
PATCH etc. are sent in the request body. The request component
will parse these parameters when you access them through the
methods described above. You can customize the way how these
parameters are parsed by con�guring the yii\web\Request::

parsers property.

4.4.2 Request Methods

You can get the HTTP method used by the current request via the expression
Yii::$app->request->method. A whole set of boolean properties is also provided
for you to check if the current method is of certain type. For example,

$request = Yii::$app->request;

if ($request->isAjax) { /* the request is an AJAX request */ }

if ($request->isGet) { /* the request method is GET */ }

if ($request->isPost) { /* the request method is POST */ }

if ($request->isPut) { /* the request method is PUT */ }

4.4.3 Request URLs

The request component provides many ways of inspecting the currently re-
quested URL.

Assuming the URL being requested is http://example.com/admin/index.php

/product?id=100, you can get various parts of this URL as summarized in the
following:

168 CHAPTER 4. HANDLING REQUESTS

• yii\web\Request::url: returns /admin/index.php/product?id=100, which
is the URL without the host info part.

• yii\web\Request::absoluteUrl: returns http://example.com/admin/index
.php/product?id=100, which is the whole URL including the host info
part.

• yii\web\Request::hostInfo: returns http://example.com, which is the
host info part of the URL.

• yii\web\Request::pathInfo: returns /product, which is the part after
the entry script and before the question mark (query string).

• yii\web\Request::queryString: returns id=100, which is the part
after the question mark.

• yii\web\Request::baseUrl: returns /admin, which is the part after
the host info and before the entry script name.

• yii\web\Request::scriptUrl: returns /admin/index.php, which is the
URL without path info and query string.

• yii\web\Request::serverName: returns example.com, which is the host
name in the URL.

• yii\web\Request::serverPort: returns 80, which is the port used by
the Web server.

4.4.4 HTTP Headers

You can get the HTTP header information through the yii\web\HeaderCollection
returned by the yii\web\Request::headers property. For example,

// $headers is an object of yii\web\HeaderCollection

$headers = Yii::$app->request->headers;

// returns the Accept header value

$accept = $headers->get('Accept');

if ($headers->has('User-Agent')) { /* there is User-Agent header */ }

The request component also provides support for quickly accessing some
commonly used headers, including:

• yii\web\Request::userAgent: returns the value of the User-Agent

header.
• yii\web\Request::contentType: returns the value of the Content-Type
header which indicates the MIME type of the data in the request body.

• yii\web\Request::acceptableContentTypes: returns the content MIME
types acceptable by users. The returned types are ordered by their
quality score. Types with the highest scores will be returned �rst.

• yii\web\Request::acceptableLanguages: returns the languages ac-
ceptable by users. The returned languages are ordered by their prefer-
ence level. The �rst element represents the most preferred language.

If your application supports multiple languages and you want to display
pages in the language that is the most preferred by the end user, you may use

4.5. RESPONSES 169

the language negotiation method yii\web\Request::getPreferredLanguage().
This method takes a list of languages supported by your application, com-
pares them with yii\web\Request::acceptableLanguages, and returns the
most appropriate language.

Tip: You may also use the yii\filters\ContentNegotiator

�lter to dynamically determine what content type and language
should be used in the response. The �lter implements the con-
tent negotiation on top of the properties and methods described
above.

4.4.5 Client Information

You can get the host name and IP address of the client machine through
yii\web\Request::userHost and yii\web\Request::userIP, respectively.
For example,

$userHost = Yii::$app->request->userHost;

$userIP = Yii::$app->request->userIP;

4.5 Responses

When an application �nishes handling a request, it generates a yii\web

\Response object and sends it to the end user. The response object contains
information such as the HTTP status code, HTTP headers and body. The
ultimate goal of Web application development is essentially to build such
response objects upon various requests.

In most cases you should mainly deal with the response application com-
ponent which is an instance of yii\web\Response, by default. However, Yii
also allows you to create your own response objects and send them to end
users as we will explain in the following.

In this section, we will describe how to compose and send responses to
end users.

4.5.1 Status Code

One of the �rst things you would do when building a response is to state
whether the request is successfully handled. This is done by setting the
yii\web\Response::statusCode property which can take one of the valid
HTTP status codes5. For example, to indicate the request is successfully
handled, you may set the status code to be 200, like the following:

Yii::$app->response->statusCode = 200;

5http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

170 CHAPTER 4. HANDLING REQUESTS

However, in most cases you do not need to explicitly set the status code.
This is because the default value of yii\web\Response::statusCode is 200.
And if you want to indicate the request is unsuccessful, you may throw an
appropriate HTTP exception like the following:

throw new \yii\web\NotFoundHttpException;

When the error handler catches an exception, it will extract the status
code from the exception and assign it to the response. For the yii\web

\NotFoundHttpException above, it is associated with the HTTP status 404.
The following HTTP exceptions are prede�ned in Yii:

• yii\web\BadRequestHttpException: status code 400.
• yii\web\ConflictHttpException: status code 409.
• yii\web\ForbiddenHttpException: status code 403.
• yii\web\GoneHttpException: status code 410.
• yii\web\MethodNotAllowedHttpException: status code 405.
• yii\web\NotAcceptableHttpException: status code 406.
• yii\web\NotFoundHttpException: status code 404.
• yii\web\ServerErrorHttpException: status code 500.
• yii\web\TooManyRequestsHttpException: status code 429.
• yii\web\UnauthorizedHttpException: status code 401.
• yii\web\UnsupportedMediaTypeHttpException: status code 415.

If the exception that you want to throw is not among the above list, you may
create one by extending from yii\web\HttpException, or directly throw it
with a status code, for example,

throw new \yii\web\HttpException(402);

4.5.2 HTTP Headers

You can send HTTP headers by manipulating the yii\web\Response::

headers in the response component. For example,

$headers = Yii::$app->response->headers;

// add a Pragma header. Existing Pragma headers will NOT be overwritten.

$headers->add('Pragma', 'no-cache');

// set a Pragma header. Any existing Pragma headers will be discarded.

$headers->set('Pragma', 'no-cache');

// remove Pragma header(s) and return the removed Pragma header values in an

array

$values = $headers->remove('Pragma');

Info: Header names are case insensitive. And the newly re-
gistered headers are not sent to the user until the yii\web\Response
::send() method is called.

4.5. RESPONSES 171

4.5.3 Response Body

Most responses should have a body which gives the content that you want
to show to end users.

If you already have a formatted body string, you may assign it to the
yii\web\Response::content property of the response. For example,

Yii::$app->response->content = 'hello world!';

If your data needs to be formatted before sending it to end users, you should
set both of the yii\web\Response::format and yii\web\Response::data

properties. The yii\web\Response::format property speci�es in which
format the yii\web\Response::data should be formatted. For example,

$response = Yii::$app->response;

$response->format = \yii\web\Response::FORMAT_JSON;

$response->data = ['message' => 'hello world'];

Yii supports the following formats out of the box, each implemented by a yii
\web\ResponseFormatterInterface class. You can customize these format-
ters or add new ones by con�guring the yii\web\Response::formatters

property.
• yii\web\Response::FORMAT_HTML: implemented by yii\web\HtmlResponseFormatter.
• yii\web\Response::FORMAT_XML: implemented by yii\web\XmlResponseFormatter.
• yii\web\Response::FORMAT_JSON: implemented by yii\web\JsonResponseFormatter.
• yii\web\Response::FORMAT_JSONP: implemented by yii\web\JsonResponseFormatter.
• yii\web\Response::FORMAT_RAW: use this format if you want to send
the response directly without applying any formatting.

While the response body can be set explicitly as shown above, in most cases
you may set it implicitly by the return value of action methods. A common
use case is like the following:

public function actionIndex()

{

return $this->render('index');

}

The index action above returns the rendering result of the index view. The
return value will be taken by the response component, formatted and then
sent to end users.

Because by default the response format is yii\web\Response::FORMAT_HTML,
you should only return a string in an action method. If you want to use a
di�erent response format, you should set it �rst before returning the data.
For example,

public function actionInfo()

{

\Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;

return [

'message' => 'hello world',

'code' => 100,

172 CHAPTER 4. HANDLING REQUESTS

];

}

As aforementioned, besides using the default response application compon-
ent, you can also create your own response objects and send them to end
users. You can do so by returning such object in an action method, like the
following,

public function actionInfo()

{

return \Yii::createObject([

'class' => 'yii\web\Response',

'format' => \yii\web\Response::FORMAT_JSON,

'data' => [

'message' => 'hello world',

'code' => 100,

],

]);

}

Note: If you are creating your own response objects, you will
not be able to take advantage of the con�gurations that you
set for the response component in the application con�guration.
You can, however, use dependency injection to apply a common
con�guration to your new response objects.

4.5.4 Browser Redirection

Browser redirection relies on sending a Location HTTP header. Because this
feature is commonly used, Yii provides some special support for it.

You can redirect the user browser to a URL by calling the yii\web

\Response::redirect() method. The method sets the appropriate Location

header with the given URL and returns the response object itself. In
an action method, you can call its shortcut version yii\web\Controller

::redirect(). For example,

public function actionOld()

{

return $this->redirect('http://example.com/new', 301);

}

In the above code, the action method returns the result of the redirect()

method. As explained before, the response object returned by an action
method will be used as the response sending to end users.

In places other than an action method, you should call yii\web\Response
::redirect() directly followed by a chained call to the yii\web\Response
::send() method to ensure no extra content will be appended to the re-
sponse.

\Yii::$app->response->redirect('http://example.com/new', 301)->send();

4.5. RESPONSES 173

Info: By default, the yii\web\Response::redirect() method
sets the response status code to be 302 which instructs the browser
that the resource being requested is temporarily located in a dif-
ferent URI. You can pass in a status code 301 to tell the browser
that the resource has been permanently relocated.

When the current request is an AJAX request, sending a Location header will
not automatically cause the browser to redirect. To solve this problem, the
yii\web\Response::redirect() method sets an X-Redirect header with the
redirection URL as its value. On the client-side, you may write JavaScript
code to read this header value and redirect the browser accordingly.

Info: Yii comes with a yii.js JavaScript �le which provides
a set of commonly used JavaScript utilities, including browser
redirection based on the X-Redirect header. Therefore, if you are
using this JavaScript �le (by registering the yii\web\YiiAsset

asset bundle), you do not need to write anything to support
AJAX redirection. More information about yii.js can be found
in the Client Scripts Section.

4.5.5 Sending Files

Like browser redirection, �le sending is another feature that relies on speci�c
HTTP headers. Yii provides a set of methods to support various �le sending
needs. They all have built-in support for the HTTP range header.

• yii\web\Response::sendFile(): sends an existing �le to a client.
• yii\web\Response::sendContentAsFile(): sends a text string as a
�le to a client.

• yii\web\Response::sendStreamAsFile(): sends an existing �le stream
as a �le to a client.

These methods have the same method signature with the response object
as the return value. If the �le to be sent is very big, you should consider
using yii\web\Response::sendStreamAsFile() because it is more memory
e�cient. The following example shows how to send a �le in a controller
action:

public function actionDownload()

{

return \Yii::$app->response->sendFile('path/to/file.txt');

}

If you are calling the �le sending method in places other than an action
method, you should also call the yii\web\Response::send() method after-
wards to ensure no extra content will be appended to the response.

\Yii::$app->response->sendFile('path/to/file.txt')->send();

174 CHAPTER 4. HANDLING REQUESTS

Some Web servers have a special �le sending support called X-Send�le. The
idea is to redirect the request for a �le to the Web server which will directly
serve the �le. As a result, the Web application can terminate earlier while
the Web server is sending the �le. To use this feature, you may call the
yii\web\Response::xSendFile(). The following list summarizes how to
enable the X-Sendfile feature for some popular Web servers:

• Apache: X-Send�le6

• Lighttpd v1.4: X-LIGHTTPD-send-�le7

• Lighttpd v1.5: X-Send�le8

• Nginx: X-Accel-Redirect9

• Cherokee: X-Send�le and X-Accel-Redirect10

4.5.6 Sending Response

The content in a response is not sent to the user until the yii\web\Response
::send() method is called. By default, this method will be called automat-
ically at the end of yii\base\Application::run(). You can, however,
explicitly call this method to force sending out the response immediately.

The yii\web\Response::send() method takes the following steps to
send out a response:

1. Trigger the yii\web\Response::EVENT_BEFORE_SEND event.

2. Call yii\web\Response::prepare() to format yii\web\Response::
data into yii\web\Response::content.

3. Trigger the yii\web\Response::EVENT_AFTER_PREPARE event.

4. Call yii\web\Response::sendHeaders() to send out the registered
HTTP headers.

5. Call yii\web\Response::sendContent() to send out the response body
content.

6. Trigger the yii\web\Response::EVENT_AFTER_SEND event.

After the yii\web\Response::send() method is called once, any further
call to this method will be ignored. This means once the response is sent
out, you will not be able to append more content to it.

As you can see, the yii\web\Response::send() method triggers several
useful events. By responding to these events, it is possible to adjust or
decorate the response.

6http://tn123.org/mod_xsendfile
7http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file
8http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file
9http://wiki.nginx.org/XSendfile

10http://www.cherokee-project.com/doc/other_goodies.html#x-sendfile

http://tn123.org/mod_xsendfile
http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file
http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file
http://wiki.nginx.org/XSendfile
http://www.cherokee-project.com/doc/other_goodies.html#x-sendfile

4.6. SESSIONS AND COOKIES 175

4.6 Sessions and Cookies

Sessions and cookies allow data to be persisted across multiple user requests.
In plain PHP you may access them through the global variables $_SESSION and
$_COOKIE, respectively. Yii encapsulates sessions and cookies as objects and
thus allows you to access them in an object-oriented fashion with additional
useful enhancements.

4.6.1 Sessions

Like requests and responses, you can get access to sessions via the session

application component which is an instance of yii\web\Session, by default.

Opening and Closing Sessions

To open and close a session, you can do the following:

$session = Yii::$app->session;

// check if a session is already open

if ($session->isActive) ...

// open a session

$session->open();

// close a session

$session->close();

// destroys all data registered to a session.

$session->destroy();

You can call yii\web\Session::open() and yii\web\Session::close()

multiple times without causing errors; internally the methods will �rst check
if the session is already open.

Accessing Session Data

To access the data stored in session, you can do the following:

$session = Yii::$app->session;

// get a session variable. The following usages are equivalent:

$language = $session->get('language');

$language = $session['language'];

$language = isset($_SESSION['language']) ? $_SESSION['language'] : null;

// set a session variable. The following usages are equivalent:

$session->set('language', 'en-US');

$session['language'] = 'en-US';

$_SESSION['language'] = 'en-US';

// remove a session variable. The following usages are equivalent:

176 CHAPTER 4. HANDLING REQUESTS

$session->remove('language');

unset($session['language']);

unset($_SESSION['language']);

// check if a session variable exists. The following usages are equivalent:

if ($session->has('language')) ...

if (isset($session['language'])) ...

if (isset($_SESSION['language'])) ...

// traverse all session variables. The following usages are equivalent:

foreach ($session as $name => $value) ...

foreach ($_SESSION as $name => $value) ...

Info: When you access session data through the session compon-
ent, a session will be automatically opened if it has not been done
so before. This is di�erent from accessing session data through
$_SESSION, which requires an explicit call of session_start().

When working with session data that are arrays, the session component has
a limitation which prevents you from directly modifying an array element.
For example,

$session = Yii::$app->session;

// the following code will NOT work

$session['captcha']['number'] = 5;

$session['captcha']['lifetime'] = 3600;

// the following code works:

$session['captcha'] = [

'number' => 5,

'lifetime' => 3600,

];

// the following code also works:

echo $session['captcha']['lifetime'];

You can use one of the following workarounds to solve this problem:

$session = Yii::$app->session;

// directly use $_SESSION (make sure Yii::$app->session->open() has been

called)

$_SESSION['captcha']['number'] = 5;

$_SESSION['captcha']['lifetime'] = 3600;

// get the whole array first, modify it and then save it back

$captcha = $session['captcha'];

$captcha['number'] = 5;

$captcha['lifetime'] = 3600;

$session['captcha'] = $captcha;

// use ArrayObject instead of array

4.6. SESSIONS AND COOKIES 177

$session['captcha'] = new \ArrayObject;

...

$session['captcha']['number'] = 5;

$session['captcha']['lifetime'] = 3600;

// store array data by keys with a common prefix

$session['captcha.number'] = 5;

$session['captcha.lifetime'] = 3600;

For better performance and code readability, we recommend the last work-
around. That is, instead of storing an array as a single session variable, you
store each array element as a session variable which shares the same key
pre�x with other array elements.

Custom Session Storage

The default yii\web\Session class stores session data as �les on the server.
Yii also provides the following session classes implementing di�erent session
storage:

• yii\web\DbSession: stores session data in a database table.
• yii\web\CacheSession: stores session data in a cache with the help
of a con�gured cache component.

• yii\redis\Session: stores session data using redis11 as the storage
medium.

• yii\mongodb\Session: stores session data in a MongoDB12.
All these session classes support the same set of API methods. As a result,
you can switch to a di�erent session storage class without the need to modify
your application code that uses sessions.

Note: If you want to access session data via $_SESSION while
using custom session storage, you must make sure that the session
has already been started by yii\web\Session::open(). This is
because custom session storage handlers are registered within this
method.

To learn how to con�gure and use these component classes, please refer to
their API documentation. Below is an example showing how to con�gure
yii\web\DbSession in the application con�guration to use a database table
for session storage:

return [

'components' => [

'session' => [

'class' => 'yii\web\DbSession',

// 'db' => 'mydb', // the application component ID of the DB

connection. Defaults to 'db'.

11http://redis.io/
12http://www.mongodb.org/

http://redis.io/
http://www.mongodb.org/

178 CHAPTER 4. HANDLING REQUESTS

// 'sessionTable' => 'my_session', // session table name.

Defaults to 'session'.

],

],

];

You also need to create the following database table to store session data:

CREATE TABLE session

(

id CHAR(40) NOT NULL PRIMARY KEY,

expire INTEGER,

data BLOB

)

where `BLOB' refers to the BLOB-type of your preferred DBMS. Below are
the BLOB types that can be used for some popular DBMS:

• MySQL: LONGBLOB
• PostgreSQL: BYTEA
• MSSQL: BLOB

Note: According to the php.ini setting of session.hash_function,
you may need to adjust the length of the id column. For example,
if session.hash_function=sha256, you should use a length 64 instead
of 40.

Flash Data

Flash data is a special kind of session data which, once set in one request, will
only be available during the next request and will be automatically deleted
afterwards. Flash data is most commonly used to implement messages that
should only be displayed to end users once, such as a con�rmation message
displayed after a user successfully submits a form.

You can set and access �ash data through the session application com-
ponent. For example,

$session = Yii::$app->session;

// Request #1

// set a flash message named as "postDeleted"

$session->setFlash('postDeleted', 'You have successfully deleted your post.'

);

// Request #2

// display the flash message named "postDeleted"

echo $session->getFlash('postDeleted');

// Request #3

// $result will be false since the flash message was automatically deleted

$result = $session->hasFlash('postDeleted');

4.6. SESSIONS AND COOKIES 179

Like regular session data, you can store arbitrary data as �ash data.
When you call yii\web\Session::setFlash(), it will overwrite any ex-

isting �ash data that has the same name. To append new �ash data to
an existing message of the same name, you may call yii\web\Session::
addFlash() instead. For example:

$session = Yii::$app->session;

// Request #1

// add a few flash messages under the name of "alerts"

$session->addFlash('alerts', 'You have successfully deleted your post.');

$session->addFlash('alerts', 'You have successfully added a new friend.');

$session->addFlash('alerts', 'You are promoted.');

// Request #2

// $alerts is an array of the flash messages under the name of "alerts"

$alerts = $session->getFlash('alerts');

Note: Try not to use yii\web\Session::setFlash() together
with yii\web\Session::addFlash() for �ash data of the same
name. This is because the latter method will automatically turn
the �ash data into an array so that it can append new �ash data
of the same name. As a result, when you call yii\web\Session
::getFlash(), you may �nd sometimes you are getting an array
while sometimes you are getting a string, depending on the order
of the invocation of these two methods.

Tip: For displaying Flash messages you can use yii\bootstrap
\Alert widget in the following way:

echo Alert::widget([

'options' => ['class' => 'alert-info'],

'body' => Yii::$app->session->getFlash('postDeleted'),

]);

4.6.2 Cookies

Yii represents each cookie as an object of yii\web\Cookie. Both yii\web

\Request and yii\web\Response maintain a collection of cookies via the
property named cookies. The cookie collection in the former represents the
cookies submitted in a request, while the cookie collection in the latter rep-
resents the cookies that are to be sent to the user.

The part of the application dealing with request and response directly is
controller. Therefore, cookies should be read and sent in controller.

Reading Cookies

You can get the cookies in the current request using the following code:

180 CHAPTER 4. HANDLING REQUESTS

// get the cookie collection (yii\web\CookieCollection) from the "request"

component

$cookies = Yii::$app->request->cookies;

// get the "language" cookie value. If the cookie does not exist, return "en

" as the default value.

$language = $cookies->getValue('language', 'en');

// an alternative way of getting the "language" cookie value

if (($cookie = $cookies->get('language')) !== null) {

$language = $cookie->value;

}

// you may also use $cookies like an array

if (isset($cookies['language'])) {

$language = $cookies['language']->value;

}

// check if there is a "language" cookie

if ($cookies->has('language')) ...

if (isset($cookies['language'])) ...

Sending Cookies

You can send cookies to end users using the following code:

// get the cookie collection (yii\web\CookieCollection) from the "response"

component

$cookies = Yii::$app->response->cookies;

// add a new cookie to the response to be sent

$cookies->add(new \yii\web\Cookie([

'name' => 'language',

'value' => 'zh-CN',

]));

// remove a cookie

$cookies->remove('language');

// equivalent to the following

unset($cookies['language']);

Besides the yii\web\Cookie::name, yii\web\Cookie::value properties shown
in the above examples, the yii\web\Cookie class also de�nes other prop-
erties to fully represent all available cookie information, such as yii\web

\Cookie::domain, yii\web\Cookie::expire. You may con�gure these prop-
erties as needed to prepare a cookie and then add it to the response's cookie
collection.

Note: For better security, the default value of yii\web\Cookie
::httpOnly is set to true. This helps mitigate the risk of a client-
side script accessing the protected cookie (if the browser supports

4.6. SESSIONS AND COOKIES 181

it). You may read the httpOnly wiki article13 for more details.

Cookie Validation

When you are reading and sending cookies through the request and response

components as shown in the last two subsections, you enjoy the added
security of cookie validation which protects cookies from being modi�ed on
the client-side. This is achieved by signing each cookie with a hash string,
which allows the application to tell if a cookie has been modi�ed on the
client-side. If so, the cookie will NOT be accessible through the yii\web

\Request::cookies of the request component.

Note: Cookie validation only protects cookie values from being
modi�ed. If a cookie fails the validation, you may still access it
through $_COOKIE. This is because third-party libraries may ma-
nipulate cookies in their own way, which does not involve cookie
validation.

Cookie validation is enabled by default. You can disable it by setting the yii
\web\Request::enableCookieValidation property to be false, although
we strongly recommend you do not do so.

Note: Cookies that are directly read/sent via $_COOKIE and setcookie

() will NOT be validated.

When using cookie validation, you must specify a yii\web\Request::cookieValidationKey
that will be used to generate the aforementioned hash strings. You can do
so by con�guring the request component in the application con�guration:

return [

'components' => [

'request' => [

'cookieValidationKey' => 'fill in a secret key here',

],

],

];

Info: yii\web\Request::cookieValidationKey is critical to
your application's security. It should only be known to people
you trust. Do not store it in the version control system.

13https://www.owasp.org/index.php/HttpOnly

https://www.owasp.org/index.php/HttpOnly

182 CHAPTER 4. HANDLING REQUESTS

4.7 Handling Errors

Yii includes a built-in yii\web\ErrorHandler which makes error handling
a much more pleasant experience than before. In particular, the Yii error
handler does the following to improve error handling:

• All non-fatal PHP errors (e.g. warnings, notices) are converted into
catchable exceptions.

• Exceptions and fatal PHP errors are displayed with detailed call stack
information and source code lines in debug mode.

• Supports using a dedicated controller action to display errors.
• Supports di�erent error response formats.

The yii\web\ErrorHandler is enabled by default. You may disable it by
de�ning the constant YII_ENABLE_ERROR_HANDLER to be false in the entry script
of your application.

4.7.1 Using Error Handler

The yii\web\ErrorHandler is registered as an application component named
errorHandler. You may con�gure it in the application con�guration like the
following:

return [

'components' => [

'errorHandler' => [

'maxSourceLines' => 20,

],

],

];

With the above con�guration, the number of source code lines to be displayed
in exception pages will be up to 20.

As aforementioned, the error handler turns all non-fatal PHP errors into
catchable exceptions. This means you can use the following code to deal
with PHP errors:

use Yii;

use yii\base\ErrorException;

try {

10/0;

} catch (ErrorException $e) {

Yii::warning("Division by zero.");

}

// execution continues...

If you want to show an error page telling the user that his request is invalid
or unexpected, you may simply throw an yii\web\HttpException, such as
yii\web\NotFoundHttpException. The error handler will correctly set the

4.7. HANDLING ERRORS 183

HTTP status code of the response and use an appropriate error view to
display the error message.

use yii\web\NotFoundHttpException;

throw new NotFoundHttpException();

4.7.2 Customizing Error Display

The yii\web\ErrorHandler adjusts the error display according to the value
of the constant YII_DEBUG. When YII_DEBUG is true (meaning in debug mode),
the error handler will display exceptions with detailed call stack informa-
tion and source code lines to help easier debugging. And when YII_DEBUG is
false, only the error message will be displayed to prevent revealing sensitive
information about the application.

Info: If an exception is a descendant of yii\base\UserException,
no call stack will be displayed regardless the value of YII_DEBUG.
This is because such exceptions are considered to be caused by
user mistakes and the developers do not need to �x anything.

By default, the yii\web\ErrorHandler displays errors using two views:
• @yii/views/errorHandler/error.php: used when errors should be displayed
WITHOUT call stack information. When YII_DEBUG is false, this is the
only error view to be displayed.

• @yii/views/errorHandler/exception.php: used when errors should be dis-
played WITH call stack information.

You can con�gure the yii\web\ErrorHandler::errorView and yii\web

\ErrorHandler::exceptionView properties of the error handler to use your
own views to customize the error display.

Using Error Actions

A better way of customizing the error display is to use dedicated error ac-
tions. To do so, �rst con�gure the yii\web\ErrorHandler::errorAction

property of the errorHandler component like the following:

return [

'components' => [

'errorHandler' => [

'errorAction' => 'site/error',

],

]

];

The yii\web\ErrorHandler::errorAction property takes a route to an ac-
tion. The above con�guration states that when an error needs to be displayed
without call stack information, the site/error action should be executed.

You can create the site/error action as follows,

184 CHAPTER 4. HANDLING REQUESTS

namespace app\controllers;

use Yii;

use yii\web\Controller;

class SiteController extends Controller

{

public function actions()

{

return [

'error' => [

'class' => 'yii\web\ErrorAction',

],

];

}

}

The above code de�nes the error action using the yii\web\ErrorAction

class which renders an error using a view named error.

Besides using yii\web\ErrorAction, you may also de�ne the error ac-
tion using an action method like the following,

public function actionError()

{

$exception = Yii::$app->errorHandler->exception;

if ($exception !== null) {

return $this->render('error', ['exception' => $exception]);

}

}

You should now create a view �le located at views/site/error.php. In this
view �le, you can access the following variables if the error action is de�ned
as yii\web\ErrorAction:

• name: the name of the error;
• message: the error message;
• exception: the exception object through which you can retrieve more
useful information, such as HTTP status code, error code, error call
stack, etc.

Info: If you are using the basic project template or the ad-
vanced project template14, the error action and the error view
are already de�ned for you.

Note: If you need to redirect in an error handler, do it the
following way:

Yii::$app->getResponse()->redirect($url)->send();

return;

14https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/

README.md

https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md

4.7. HANDLING ERRORS 185

Customizing Error Response Format

The error handler displays errors according to the format setting of the
response. If the yii\web\Response::format is html, it will use the error
or exception view to display errors, as described in the last subsection. For
other response formats, the error handler will assign the array representation
of the exception to the yii\web\Response::data property which will then
be converted to di�erent formats accordingly. For example, if the response
format is json, you may see the following response:

HTTP/1.1 404 Not Found

Date: Sun, 02 Mar 2014 05:31:43 GMT

Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y

Transfer-Encoding: chunked

Content-Type: application/json; charset=UTF-8

{

"name": "Not Found Exception",

"message": "The requested resource was not found.",

"code": 0,

"status": 404

}

You may customize the error response format by responding to the beforeSend

event of the response component in the application con�guration:

return [

// ...

'components' => [

'response' => [

'class' => 'yii\web\Response',

'on beforeSend' => function ($event) {

$response = $event->sender;

if ($response->data !== null) {

$response->data = [

'success' => $response->isSuccessful,

'data' => $response->data,

];

$response->statusCode = 200;

}

},

],

],

];

The above code will reformat the error response like the following:

HTTP/1.1 200 OK

Date: Sun, 02 Mar 2014 05:31:43 GMT

Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y

Transfer-Encoding: chunked

Content-Type: application/json; charset=UTF-8

{

186 CHAPTER 4. HANDLING REQUESTS

"success": false,

"data": {

"name": "Not Found Exception",

"message": "The requested resource was not found.",

"code": 0,

"status": 404

}

}

4.8 Logging

Yii provides a powerful logging framework that is highly customizable and ex-
tensible. Using this framework, you can easily log various types of messages,
�lter them, and gather them at di�erent targets, such as �les, databases,
emails.

Using the Yii logging framework involves the following steps:

• Record log messages at various places in your code;
• Con�gure log targets in the application con�guration to �lter and ex-
port log messages;

• Examine the �ltered logged messages exported by di�erent targets (e.g.
the Yii debugger).

In this section, we will mainly describe the �rst two steps.

4.8.1 Log Messages

Recording log messages is as simple as calling one of the following logging
methods:

• Yii::trace(): record a message to trace how a piece of code runs.
This is mainly for development use.

• Yii::info(): record a message that conveys some useful information.
• Yii::warning(): record a warning message that indicates something
unexpected has happened.

• Yii::error(): record a fatal error that should be investigated as soon
as possible.

These logging methods record log messages at various severity levels and
categories. They share the same function signature function ($message,

$category = 'application'), where $message stands for the log message to be
recorded, while $category is the category of the log message. The code in
the following example records a trace message under the default category
application:

Yii::trace('start calculating average revenue');

Info: Log messages can be strings as well as complex data, such
as arrays or objects. It is the responsibility of log targets to

4.8. LOGGING 187

properly deal with log messages. By default, if a log message
is not a string, it will be exported as a string by calling yii

\helpers\VarDumper::export().

To better organize and �lter log messages, it is recommended that you specify
an appropriate category for each log message. You may choose a hierarchical
naming scheme for categories, which will make it easier for log targets to �lter
messages based on their categories. A simple yet e�ective naming scheme is
to use the PHP magic constant __METHOD__ for the category names. This is
also the approach used in the core Yii framework code. For example,

Yii::trace('start calculating average revenue', __METHOD__);

The __METHOD__ constant evaluates as the name of the method (pre�xed with
the fully quali�ed class name) where the constant appears. For example,
it is equal to the string 'app\controllers\RevenueController::calculate' if the
above line of code is called within this method.

Info: The logging methods described above are actually short-
cuts to the yii\log\Logger::log()method of the yii\log\Logger
which is a singleton accessible through the expression Yii::getLogger

(). When enough messages are logged or when the application
ends, the logger object will call a yii\log\Dispatcher to send
recorded log messages to the registered log targets.

4.8.2 Log Targets

A log target is an instance of the yii\log\Target class or its child class.
It �lters the log messages by their severity levels and categories and then
exports them to some medium. For example, a yii\log\DbTarget exports
the �ltered log messages to a database table, while an yii\log\EmailTarget

exports the log messages to speci�ed email addresses.
You can register multiple log targets in an application by con�guring

them through the log application component in the application con�guration,
like the following:

return [

// the "log" component must be loaded during bootstrapping time

'bootstrap' => ['log'],

'components' => [

'log' => [

'targets' => [

[

'class' => 'yii\log\DbTarget',

'levels' => ['error', 'warning'],

],

[

'class' => 'yii\log\EmailTarget',

188 CHAPTER 4. HANDLING REQUESTS

'levels' => ['error'],

'categories' => ['yii\db*'],

'message' => [

'from' => ['log@example.com'],

'to' => ['admin@example.com', 'developer@example.com'

],

'subject' => 'Database errors at example.com',

],

],

],

],

],

];

Note: The log component must be loaded during bootstrapping
time so that it can dispatch log messages to targets promptly.
That is why it is listed in the bootstrap array as shown above.

In the above code, two log targets are registered in the yii\log\Dispatcher
::targets property:

• the �rst target selects error and warning messages and saves them in
a database table;

• the second target selects error messages under the categories whose
names start with yii\db\, and sends them in an email to both admin@example

.com and developer@example.com.

Yii comes with the following built-in log targets. Please refer to the API
documentation about these classes to learn how to con�gure and use them.

• yii\log\DbTarget: stores log messages in a database table.
• yii\log\EmailTarget: sends log messages to pre-speci�ed email ad-
dresses.

• yii\log\FileTarget: saves log messages in �les.
• yii\log\SyslogTarget: saves log messages to syslog by calling the
PHP function syslog().

In the following, we will describe the features common to all log targets.

Message Filtering

For each log target, you can con�gure its yii\log\Target::levels and yii

\log\Target::categories properties to specify which severity levels and
categories of the messages the target should process.

The yii\log\Target::levels property takes an array consisting of one
or several of the following values:

• error: corresponding to messages logged by Yii::error().
• warning: corresponding to messages logged by Yii::warning().
• info: corresponding to messages logged by Yii::info().
• trace: corresponding to messages logged by Yii::trace().

4.8. LOGGING 189

• profile: corresponding to messages logged by Yii::beginProfile()

and Yii::endProfile(), which will be explained in more details in
the Pro�ling subsection.

If you do not specify the yii\log\Target::levels property, it means the
target will process messages of any severity level.

The yii\log\Target::categories property takes an array consisting
of message category names or patterns. A target will only process messages
whose category can be found or match one of the patterns in this array. A
category pattern is a category name pre�x with an asterisk * at its end. A
category name matches a category pattern if it starts with the same pre�x of
the pattern. For example, yii\db\Command::execute and yii\db\Command::query

are used as category names for the log messages recorded in the yii\db

\Command class. They both match the pattern yii\db*.

If you do not specify the yii\log\Target::categories property, it
means the target will process messages of any category.

Besides whitelisting the categories by the yii\log\Target::categories
property, you may also blacklist certain categories by the yii\log\Target

::except property. If the category of a message is found or matches one of
the patterns in this property, it will NOT be processed by the target.

The following target con�guration speci�es that the target should only
process error and warning messages under the categories whose names match
either yii\db* or yii\web\HttpException:*, but not yii\web\HttpException:404.

[

'class' => 'yii\log\FileTarget',

'levels' => ['error', 'warning'],

'categories' => [

'yii\db*',

'yii\web\HttpException:*',

],

'except' => [

'yii\web\HttpException:404',

],

]

Info: When an HTTP exception is caught by the error hand-
ler, an error message will be logged with the category name in
the format of yii\web\HttpException:ErrorCode. For example, the
yii\web\NotFoundHttpException will cause an error message of
category yii\web\HttpException:404.

Message Formatting

Log targets export the �ltered log messages in a certain format. For example,
if you install a log target of the class yii\log\FileTarget, you may �nd a
log message similar to the following in the runtime/log/app.log �le:

190 CHAPTER 4. HANDLING REQUESTS

2014-10-04 18:10:15 [::1][][-][trace][yii\base\Module::getModule] Loading

module: debug

By default, log messages will be formatted as follows by the yii\log\Target
::formatMessage():

Timestamp [IP address][User ID][Session ID][Severity Level][Category]

Message Text

You may customize this format by con�guring the yii\log\Target::prefix
property which takes a PHP callable returning a customized message pre�x.
For example, the following code con�gures a log target to pre�x each log
message with the current user ID (IP address and Session ID are removed
for privacy reasons).

[

'class' => 'yii\log\FileTarget',

'prefix' => function ($message) {

$user = Yii::$app->has('user', true) ? Yii::$app->get('user') : null

;

$userID = $user ? $user->getId(false) : '-';

return "[$userID]";

}

]

Besides message pre�xes, log targets also append some context information
to each batch of log messages. By default, the values of these global PHP
variables are included: $_GET, $_POST, $_FILES, $_COOKIE, $_SESSION and $_SERVER.
You may adjust this behavior by con�guring the yii\log\Target::logVars
property with the names of the global variables that you want to include by
the log target. For example, the following log target con�guration speci�es
that only the value of the $_SERVER variable will be appended to the log
messages.

[

'class' => 'yii\log\FileTarget',

'logVars' => ['_SERVER'],

]

You may con�gure logVars to be an empty array to totally disable the in-
clusion of context information. Or if you want to implement your own way
of providing context information, you may override the yii\log\Target::

getContextMessage() method.

Message Trace Level

During development, it is often desirable to see where each log message is
coming from. This can be achieved by con�guring the yii\log\Dispatcher
::traceLevel property of the log component like the following:

return [

'bootstrap' => ['log'],

4.8. LOGGING 191

'components' => [

'log' => [

'traceLevel' => YII_DEBUG ? 3 : 0,

'targets' => [...],

],

],

];

The above application con�guration sets yii\log\Dispatcher::traceLevel
to be 3 if YII_DEBUG is on and 0 if YII_DEBUG is o�. This means, if YII_DEBUG is
on, each log message will be appended with at most 3 levels of the call stack
at which the log message is recorded; and if YII_DEBUG is o�, no call stack
information will be included.

Info: Getting call stack information is not trivial. Therefore,
you should only use this feature during development or when
debugging an application.

Message Flushing and Exporting

As aforementioned, log messages are maintained in an array by the yii\log
\Logger. To limit the memory consumption by this array, the logger will
�ush the recorded messages to the log targets each time the array accumu-
lates a certain number of log messages. You can customize this number by
con�guring the yii\log\Dispatcher::flushInterval property of the log

component:

return [

'bootstrap' => ['log'],

'components' => [

'log' => [

'flushInterval' => 100, // default is 1000

'targets' => [...],

],

],

];

Info: Message �ushing also occurs when the application ends,
which ensures log targets can receive complete log messages.

When the yii\log\Logger �ushes log messages to log targets, they do
not get exported immediately. Instead, the message exporting only oc-
curs when a log target accumulates certain number of the �ltered mes-
sages. You can customize this number by con�guring the yii\log\Target

::exportInterval property of individual log targets, like the following,

[

'class' => 'yii\log\FileTarget',

'exportInterval' => 100, // default is 1000

]

192 CHAPTER 4. HANDLING REQUESTS

Because of the �ushing and exporting level setting, by default when you
call Yii::trace() or any other logging method, you will NOT see the log
message immediately in the log targets. This could be a problem for some
long-running console applications. To make each log message appear im-
mediately in the log targets, you should set both yii\log\Dispatcher::

flushInterval and yii\log\Target::exportInterval to be 1, as shown
below:

return [

'bootstrap' => ['log'],

'components' => [

'log' => [

'flushInterval' => 1,

'targets' => [

[

'class' => 'yii\log\FileTarget',

'exportInterval' => 1,

],

],

],

],

];

Note: Frequent message �ushing and exporting will degrade the
performance of your application.

Toggling Log Targets

You can enable or disable a log target by con�guring its yii\log\Target::
enabled property. You may do so via the log target con�guration or by the
following PHP statement in your code:

Yii::$app->log->targets['file']->enabled = false;

The above code requires you to name a target as file, as shown below by
using string keys in the targets array:

return [

'bootstrap' => ['log'],

'components' => [

'log' => [

'targets' => [

'file' => [

'class' => 'yii\log\FileTarget',

],

'db' => [

'class' => 'yii\log\DbTarget',

],

],

],

],

];

4.8. LOGGING 193

Creating New Targets

Creating a new log target class is very simple. You mainly need to implement
the yii\log\Target::export() method sending the content of the yii\log
\Target::messages array to a designated medium. You may call the yii

\log\Target::formatMessage() method to format each message. For more
details, you may refer to any of the log target classes included in the Yii
release.

4.8.3 Performance Pro�ling

Performance pro�ling is a special type of message logging that is used to
measure the time taken by certain code blocks and �nd out what are the
performance bottlenecks. For example, the yii\db\Command class uses per-
formance pro�ling to �nd out the time taken by each DB query.

To use performance pro�ling, �rst identify the code blocks that need to
be pro�led. Then enclose each code block like the following:

\Yii::beginProfile('myBenchmark');

...code block being profiled...

\Yii::endProfile('myBenchmark');

where myBenchmark stands for a unique token identifying a code block. Later
when you examine the pro�ling result, you will use this token to locate the
time spent by the corresponding code block.

It is important to make sure that the pairs of beginProfile and endProfile

are properly nested. For example,

\Yii::beginProfile('block1');

// some code to be profiled

\Yii::beginProfile('block2');

// some other code to be profiled

\Yii::endProfile('block2');

\Yii::endProfile('block1');

If you miss \Yii::endProfile('block1') or switch the order of \Yii::endProfile
('block1') and \Yii::endProfile('block2'), the performance pro�ling will not
work.

For each code block being pro�led, a log message with the severity level
profile is recorded. You can con�gure a log target to collect such messages
and export them. The Yii debugger has a built-in performance pro�ling
panel showing the pro�ling results.

194 CHAPTER 4. HANDLING REQUESTS

Chapter 5

Key Concepts

5.1 Components

Components are the main building blocks of Yii applications. Components
are instances of yii\base\Component, or an extended class. The three main
features that components provide to other classes are:

• Properties
• Events
• Behaviors

Separately and combined, these features make Yii classes much more custom-
izable and easier to use. For example, the included yii\jui\DatePicker, a
user interface component, can be used in a view to generate an interactive
date picker:

use yii\jui\DatePicker;

echo DatePicker::widget([

'language' => 'ru',

'name' => 'country',

'clientOptions' => [

'dateFormat' => 'yy-mm-dd',

],

]);

The widget's properties are easily writable because the class extends yii

\base\Component.

While components are very powerful, they are a bit heavier than normal
objects, due to the fact that it takes extra memory and CPU time to support
event and behavior functionality in particular. If your components do not
need these two features, you may consider extending your component class
from yii\base\Object instead of yii\base\Component. Doing so will make
your components as e�cient as normal PHP objects, but with added support
for properties.

195

196 CHAPTER 5. KEY CONCEPTS

When extending your class from yii\base\Component or yii\base\Object,
it is recommended that you follow these conventions:

• If you override the constructor, specify a $config parameter as the con-
structor's last parameter, and then pass this parameter to the parent
constructor.

• Always call the parent constructor at the end of your overriding con-
structor.

• If you override the yii\base\Object::init() method, make sure you
call the parent implementation of init() at the beginning of your init()
method.

For example:

<?php

namespace yii\components\MyClass;

use yii\base\Object;

class MyClass extends Object

{

public $prop1;

public $prop2;

public function __construct($param1, $param2, $config = [])

{

// ... initialization before configuration is applied

parent::__construct($config);

}

public function init()

{

parent::init();

// ... initialization after configuration is applied

}

}

Following these guidelines will make your components con�gurable when
they are created. For example:

$component = new MyClass(1, 2, ['prop1' => 3, 'prop2' => 4]);

// alternatively

$component = \Yii::createObject([

'class' => MyClass::className(),

'prop1' => 3,

'prop2' => 4,

], [1, 2]);

Info: While the approach of calling Yii::createObject() looks
more complicated, it is more powerful because it is implemented
on top of a dependency injection container.

5.2. PROPERTIES 197

The yii\base\Object class enforces the following object lifecycle:

1. Pre-initialization within the constructor. You can set default property
values here.

2. Object con�guration via $config. The con�guration may overwrite the
default values set within the constructor.

3. Post-initialization within yii\base\Object::init(). You may over-
ride this method to perform sanity checks and normalization of the
properties.

4. Object method calls.

The �rst three steps all happen within the object's constructor. This means
that once you get a class instance (i.e., an object), that object has already
been initialized to a proper, reliable state.

5.2 Properties

In PHP, class member variables are also called properties. These variables
are part of the class de�nition, and are used to represent the state of a class
instance (i.e., to di�erentiate one instance of the class from another). In
practice, you may often want to handle the reading or writing of properties
in special ways. For example, you may want to always trim a string when
it is being assigned to a label property. You could use the following code to
achieve this task:

$object->label = trim($label);

The drawback of the above code is that you would have to call trim() every-
where in your code where you might set the label property. If, in the future,
the label property gets a new requirement, such as the �rst letter must be
capitalized, you would again have to modify every bit of code that assigns a
value to label. The repetition of code leads to bugs, and is a practice you
want to avoid as much as possible.

To solve this problem, Yii introduces a base class called yii\base\Object
that supports de�ning properties based on getter and setter class methods.
If a class needs that functionality, it should extend from yii\base\Object,
or from a child class.

Info: Nearly every core class in the Yii framework extends from
yii\base\Object or a child class. This means, that whenever
you see a getter or setter in a core class, you can use it like a
property.

198 CHAPTER 5. KEY CONCEPTS

A getter method is a method whose name starts with the word get; a setter
method starts with set. The name after the get or set pre�x de�nes the name
of a property. For example, a getter getLabel() and/or a setter setLabel()

de�nes a property named label, as shown in the following code:

namespace app\components;

use yii\base\Object;

class Foo extends Object

{

private $_label;

public function getLabel()

{

return $this->_label;

}

public function setLabel($value)

{

$this->_label = trim($value);

}

}

To be clear, the getter and setter methods create the property label, which
in this case internally refers to a private property named _label.

Properties de�ned by getters and setters can be used like class member
variables. The main di�erence is that when such property is being read,
the corresponding getter method will be called; when the property is be-
ing assigned a value, the corresponding setter method will be called. For
example:

// equivalent to $label = $object->getLabel();

$label = $object->label;

// equivalent to $object->setLabel('abc');

$object->label = 'abc';

A property de�ned by a getter without a setter is read only. Trying to assign
a value to such a property will cause an yii\base\InvalidCallException.
Similarly, a property de�ned by a setter without a getter is write only, and
trying to read such a property will also cause an exception. It is not common
to have write-only properties.

There are several special rules for, and limitations on, the properties
de�ned via getters and setters:

• The names of such properties are case-insensitive. For example, $object
->label and $object->Label are the same. This is because method names
in PHP are case-insensitive.

• If the name of such a property is the same as a class member variable,
the latter will take precedence. For example, if the above Foo class

5.3. EVENTS 199

has a member variable label, then the assignment $object->label = '

abc' will a�ect the member variable label; that line would not call the
setLabel() setter method.

• These properties do not support visibility. It makes no di�erence to
the de�ning getter or setter method if the property is public, protected
or private.

• The properties can only be de�ned by non-static getters and/or setters.
Static methods will not be treated in the same manner.

• A normal call to property_exists() does not work to determine magic
properties. You should call yii\base\Object::canGetProperty() or
yii\base\Object::canSetProperty() respectively.

Returning back to the problem described at the beginning of this guide,
instead of calling trim() everywhere a label value is assigned, trim() now
only needs to be invoked within the setter setLabel(). And if a new require-
ment makes it necessary that the label be initially capitalized, the setLabel()

method can quickly be modi�ed without touching any other code. The one
change will universally a�ect every assignment to label.

5.3 Events

Events allow you to inject custom code into existing code at certain execution
points. You can attach custom code to an event so that when the event is
triggered, the code gets executed automatically. For example, a mailer object
may trigger a messageSent event when it successfully sends a message. If you
want to keep track of the messages that are successfully sent, you could then
simply attach the tracking code to the messageSent event.

Yii introduces a base class called yii\base\Component to support events.
If a class needs to trigger events, it should extend from yii\base\Component,
or from a child class.

5.3.1 Event Handlers

An event handler is a PHP callback1 that gets executed when the event it is
attached to is triggered. You can use any of the following callbacks:

• a global PHP function speci�ed as a string (without parentheses), e.g.,
'trim';

• an object method speci�ed as an array of an object and a method name
as a string (without parentheses), e.g., [$object, 'methodName'];

• a static class method speci�ed as an array of a class name and a method
name as a string (without parentheses), e.g., ['ClassName', 'methodName

'];
• an anonymous function, e.g., function ($event) { ... }.

1http://www.php.net/manual/en/language.types.callable.php

http://www.php.net/manual/en/language.types.callable.php

200 CHAPTER 5. KEY CONCEPTS

The signature of an event handler is:

function ($event) {

// $event is an object of yii\base\Event or a child class

}

Through the $event parameter, an event handler may get the following in-
formation about the event that occurred:

• yii\base\Event::name;
• yii\base\Event::sender: the object whose trigger() method was
called;

• yii\base\Event::data: the data that is provided when attaching the
event handler (to be explained next).

5.3.2 Attaching Event Handlers

You can attach a handler to an event by calling the yii\base\Component::
on() method. For example:

$foo = new Foo;

// this handler is a global function

$foo->on(Foo::EVENT_HELLO, 'function_name');

// this handler is an object method

$foo->on(Foo::EVENT_HELLO, [$object, 'methodName']);

// this handler is a static class method

$foo->on(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// this handler is an anonymous function

$foo->on(Foo::EVENT_HELLO, function ($event) {

// event handling logic

});

You may also attach event handlers through con�gurations. For more details,
please refer to the Con�gurations section.

When attaching an event handler, you may provide additional data as
the third parameter to yii\base\Component::on(). The data will be made
available to the handler when the event is triggered and the handler is called.
For example:

// The following code will display "abc" when the event is triggered

// because $event->data contains the data passed as the 3rd argument to "on"

$foo->on(Foo::EVENT_HELLO, 'function_name', 'abc');

function function_name($event) {

echo $event->data;

}

5.3. EVENTS 201

5.3.3 Event Handler Order

You may attach one or more handlers to a single event. When an event is
triggered, the attached handlers will be called in the order that they were
attached to the event. If a handler needs to stop the invocation of the
handlers that follow it, it may set the yii\base\Event::handled property
of the $event parameter to be true:

$foo->on(Foo::EVENT_HELLO, function ($event) {

$event->handled = true;

});

By default, a newly attached handler is appended to the existing handler
queue for the event. As a result, the handler will be called in the last place
when the event is triggered. To insert the new handler at the start of the
handler queue so that the handler gets called �rst, you may call yii\base
\Component::on(), passing false for the fourth parameter $append:

$foo->on(Foo::EVENT_HELLO, function ($event) {

// ...

}, $data, false);

5.3.4 Triggering Events

Events are triggered by calling the yii\base\Component::trigger()method.
The method requires an event name, and optionally an event object that de-
scribes the parameters to be passed to the event handlers. For example:

namespace app\components;

use yii\base\Component;

use yii\base\Event;

class Foo extends Component

{

const EVENT_HELLO = 'hello';

public function bar()

{

$this->trigger(self::EVENT_HELLO);

}

}

With the above code, any calls to bar() will trigger an event named hello.

Tip: It is recommended to use class constants to represent event
names. In the above example, the constant EVENT_HELLO repres-
ents the hello event. This approach has three bene�ts. First,
it prevents typos. Second, it can make events recognizable for
IDE auto-completion support. Third, you can tell what events
are supported in a class by simply checking its constant declara-
tions.

202 CHAPTER 5. KEY CONCEPTS

Sometimes when triggering an event you may want to pass along additional
information to the event handlers. For example, a mailer may want to pass
the message information to the handlers of the messageSent event so that the
handlers can know the particulars of the sent messages. To do so, you can
provide an event object as the second parameter to the yii\base\Component
::trigger()method. The event object must be an instance of the yii\base
\Event class or a child class. For example:

namespace app\components;

use yii\base\Component;

use yii\base\Event;

class MessageEvent extends Event

{

public $message;

}

class Mailer extends Component

{

const EVENT_MESSAGE_SENT = 'messageSent';

public function send($message)

{

// ...sending $message...

$event = new MessageEvent;

$event->message = $message;

$this->trigger(self::EVENT_MESSAGE_SENT, $event);

}

}

When the yii\base\Component::trigger() method is called, it will call all
handlers attached to the named event.

5.3.5 Detaching Event Handlers

To detach a handler from an event, call the yii\base\Component::off()

method. For example:

// the handler is a global function

$foo->off(Foo::EVENT_HELLO, 'function_name');

// the handler is an object method

$foo->off(Foo::EVENT_HELLO, [$object, 'methodName']);

// the handler is a static class method

$foo->off(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// the handler is an anonymous function

$foo->off(Foo::EVENT_HELLO, $anonymousFunction);

5.3. EVENTS 203

Note that in general you should not try to detach an anonymous function
unless you store it somewhere when it is attached to the event. In the above
example, it is assumed that the anonymous function is stored as a variable
$anonymousFunction.

To detach all handlers from an event, simply call yii\base\Component
::off() without the second parameter:

$foo->off(Foo::EVENT_HELLO);

5.3.6 Class-Level Event Handlers

The above subsections described how to attach a handler to an event on an
instance level. Sometimes, you may want to respond to an event triggered
by every instance of a class instead of only by a speci�c instance. Instead
of attaching an event handler to every instance, you may attach the handler
on the class level by calling the static method yii\base\Event::on().

For example, an Active Record object will trigger an yii\db\BaseActiveRecord
::EVENT_AFTER_INSERT event whenever it inserts a new record into the data-
base. In order to track insertions done by every Active Record object, you
may use the following code:

use Yii;

use yii\base\Event;

use yii\db\ActiveRecord;

Event::on(ActiveRecord::className(), ActiveRecord::EVENT_AFTER_INSERT,

function ($event) {

Yii::trace(get_class($event->sender) . ' is inserted');

});

The event handler will be invoked whenever an instance of yii\db\ActiveRecord,
or one of its child classes, triggers the yii\db\BaseActiveRecord::EVENT_AFTER_INSERT
event. In the handler, you can get the object that triggered the event through
$event->sender.

When an object triggers an event, it will �rst call instance-level handlers,
followed by the class-level handlers.

You may trigger a class-level event by calling the static method yii\base

\Event::trigger(). A class-level event is not associated with a particular
object. As a result, it will cause the invocation of class-level event handlers
only. For example:

use yii\base\Event;

Event::on(Foo::className(), Foo::EVENT_HELLO, function ($event) {

var_dump($event->sender); // displays "null"

});

Event::trigger(Foo::className(), Foo::EVENT_HELLO);

Note that, in this case, $event->sender is null instead of an object instance.

204 CHAPTER 5. KEY CONCEPTS

Note: Because a class-level handler will respond to an event
triggered by any instance of that class, or any child classes, you
should use it carefully, especially if the class is a low-level base
class, such as yii\base\Object.

To detach a class-level event handler, call yii\base\Event::off(). For
example:

// detach $handler

Event::off(Foo::className(), Foo::EVENT_HELLO, $handler);

// detach all handlers of Foo::EVENT_HELLO

Event::off(Foo::className(), Foo::EVENT_HELLO);

5.3.7 Events using interfaces

There is even more abstract way to deal with events. You can create a
separated interface for the special event and implement it in classes, where
you need it.

For example, we can create the following interface:

namespace app\interfaces;

interface DanceEventInterface

{

const EVENT_DANCE = 'dance';

}

And two classes, that implement it:

class Dog extends Component implements DanceEventInterface

{

public function meetBuddy()

{

echo "Woof!";

$this->trigger(DanceEventInterface::EVENT_DANCE);

}

}

class Developer extends Component implements DanceEventInterface

{

public function testsPassed()

{

echo "Yay!";

$this->trigger(DanceEventInterface::EVENT_DANCE);

}

}

To handle the EVENT_DANCE, triggered by any of these classes, call yii\base
\Event::on() and pass the interface class name as the �rst argument:

Event::on('app\interfaces\DanceEventInterface', DanceEventInterface::

EVENT_DANCE, function ($event) {

5.3. EVENTS 205

Yii::trace(get_class($event->sender) . ' just danced'); // Will log that

Dog or Developer danced

});

You can trigger the event of those classes:

// trigger event for Dog class

Event::trigger(Dog::className(), DanceEventInterface::EVENT_DANCE);

// trigger event for Developer class

Event::trigger(Developer::className(), DanceEventInterface::EVENT_DANCE);

But please notice, that you can not trigger all the classes, that implement
the interface:

// DOES NOT WORK. Classes that implement this interface will NOT be

triggered.

Event::trigger('app\interfaces\DanceEventInterface', DanceEventInterface::

EVENT_DANCE);

To detach event handler, call yii\base\Event::off(). For example:

// detaches $handler

Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::

EVENT_DANCE, $handler);

// detaches all handlers of DanceEventInterface::EVENT_DANCE

Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::

EVENT_DANCE);

5.3.8 Global Events

Yii supports a so-called global event, which is actually a trick based on the
event mechanism described above. The global event requires a globally ac-
cessible Singleton, such as the application instance itself.

To create the global event, an event sender calls the Singleton's trigger()
method to trigger the event, instead of calling the sender's own trigger()

method. Similarly, the event handlers are attached to the event on the
Singleton. For example:

use Yii;

use yii\base\Event;

use app\components\Foo;

Yii::$app->on('bar', function ($event) {

echo get_class($event->sender); // displays "app\components\Foo"

});

Yii::$app->trigger('bar', new Event(['sender' => new Foo]));

A bene�t of using global events is that you do not need an object when at-
taching a handler to the event which will be triggered by the object. Instead,
the handler attachment and the event triggering are both done through the
Singleton (e.g. the application instance).

206 CHAPTER 5. KEY CONCEPTS

However, because the namespace of the global events is shared by all
parties, you should name the global events wisely, such as introducing some
sort of namespace (e.g. �frontend.mail.sent�, �backend.mail.sent�).

5.4 Behaviors

Behaviors are instances of yii\base\Behavior, or of a child class. Beha-
viors, also known as mixins2, allow you to enhance the functionality of an
existing yii\base\Component class without needing to change the class's
inheritance. Attaching a behavior to a component �injects� the behavior's
methods and properties into the component, making those methods and
properties accessible as if they were de�ned in the component class itself.
Moreover, a behavior can respond to the events triggered by the component,
which allows behaviors to also customize the normal code execution of the
component.

5.4.1 De�ning Behaviors

To de�ne a behavior, create a class that extends yii\base\Behavior, or
extends a child class. For example:

namespace app\components;

use yii\base\Behavior;

class MyBehavior extends Behavior

{

public $prop1;

private $_prop2;

public function getProp2()

{

return $this->_prop2;

}

public function setProp2($value)

{

$this->_prop2 = $value;

}

public function foo()

{

// ...

}

}

2http://en.wikipedia.org/wiki/Mixin

http://en.wikipedia.org/wiki/Mixin

5.4. BEHAVIORS 207

The above code de�nes the behavior class app\components\MyBehavior, with
two properties� prop1 and prop2�and one method foo(). Note that property
prop2 is de�ned via the getter getProp2() and the setter setProp2(). This is the
case because yii\base\Behavior extends yii\base\Object and therefore
supports de�ning properties via getters and setters.

Because this class is a behavior, when it is attached to a component, that
component will then also have the prop1 and prop2 properties and the foo()

method.

Tip: Within a behavior, you can access the component that the
behavior is attached to through the yii\base\Behavior::owner
property.

Note: In case yii\base\Behavior::__get() and/or yii\base
\Behavior::__set() method of behavior is overridden you need
to override yii\base\Behavior::canGetProperty() and/or yii
\base\Behavior::canSetProperty() as well.

5.4.2 Handling Component Events

If a behavior needs to respond to the events triggered by the component it is
attached to, it should override the yii\base\Behavior::events() method.
For example:

namespace app\components;

use yii\db\ActiveRecord;

use yii\base\Behavior;

class MyBehavior extends Behavior

{

// ...

public function events()

{

return [

ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',

];

}

public function beforeValidate($event)

{

// ...

}

}

The yii\base\Behavior::events() method should return a list of events
and their corresponding handlers. The above example declares that the yii
\db\ActiveRecord::EVENT_BEFORE_VALIDATE event exists and de�nes its

208 CHAPTER 5. KEY CONCEPTS

handler, beforeValidate(). When specifying an event handler, you may use
one of the following formats:

• a string that refers to the name of a method of the behavior class, like
the example above

• an array of an object or class name, and a method name as a string
(without parentheses), e.g., [$object, 'methodName'];

• an anonymous function

The signature of an event handler should be as follows, where $event refers
to the event parameter. Please refer to the Events section for more details
about events.

function ($event) {

}

5.4.3 Attaching Behaviors

You can attach a behavior to a yii\base\Component either statically or
dynamically. The former is more common in practice.

To attach a behavior statically, override the yii\base\Component::behaviors()
method of the component class to which the behavior is being attached. The
yii\base\Component::behaviors()method should return a list of behavior
con�gurations. Each behavior con�guration can be either a behavior class
name or a con�guration array:

namespace app\models;

use yii\db\ActiveRecord;

use app\components\MyBehavior;

class User extends ActiveRecord

{

public function behaviors()

{

return [

// anonymous behavior, behavior class name only

MyBehavior::className(),

// named behavior, behavior class name only

'myBehavior2' => MyBehavior::className(),

// anonymous behavior, configuration array

[

'class' => MyBehavior::className(),

'prop1' => 'value1',

'prop2' => 'value2',

],

// named behavior, configuration array

'myBehavior4' => [

'class' => MyBehavior::className(),

5.4. BEHAVIORS 209

'prop1' => 'value1',

'prop2' => 'value2',

]

];

}

}

You may associate a name with a behavior by specifying the array key cor-
responding to the behavior con�guration. In this case, the behavior is called
a named behavior. In the above example, there are two named behaviors:
myBehavior2 and myBehavior4. If a behavior is not associated with a name, it
is called an anonymous behavior.

To attach a behavior dynamically, call the yii\base\Component::attachBehavior()
method of the component to which the behavior is being attached:

use app\components\MyBehavior;

// attach a behavior object

$component->attachBehavior('myBehavior1', new MyBehavior);

// attach a behavior class

$component->attachBehavior('myBehavior2', MyBehavior::className());

// attach a configuration array

$component->attachBehavior('myBehavior3', [

'class' => MyBehavior::className(),

'prop1' => 'value1',

'prop2' => 'value2',

]);

You may attach multiple behaviors at once using the yii\base\Component

::attachBehaviors() method:

$component->attachBehaviors([

'myBehavior1' => new MyBehavior, // a named behavior

MyBehavior::className(), // an anonymous behavior

]);

You may also attach behaviors through con�gurations like the following:

[

'as myBehavior2' => MyBehavior::className(),

'as myBehavior3' => [

'class' => MyBehavior::className(),

'prop1' => 'value1',

'prop2' => 'value2',

],

]

For more details, please refer to the Con�gurations section.

210 CHAPTER 5. KEY CONCEPTS

5.4.4 Using Behaviors

To use a behavior, �rst attach it to a yii\base\Component per the in-
structions above. Once a behavior is attached to a component, its usage
is straightforward.

You can access a public member variable or a property de�ned by a getter
and/or a setter of the behavior through the component it is attached to:

// "prop1" is a property defined in the behavior class

echo $component->prop1;

$component->prop1 = $value;

You can also call a public method of the behavior similarly:

// foo() is a public method defined in the behavior class

$component->foo();

As you can see, although $component does not de�ne prop1 and foo(), they can
be used as if they are part of the component de�nition due to the attached
behavior.

If two behaviors de�ne the same property or method and they are both
attached to the same component, the behavior that is attached to the com-
ponent �rst will take precedence when the property or method is accessed.

A behavior may be associated with a name when it is attached to a
component. If this is the case, you may access the behavior object using the
name:

$behavior = $component->getBehavior('myBehavior');

You may also get all behaviors attached to a component:

$behaviors = $component->getBehaviors();

5.4.5 Detaching Behaviors

To detach a behavior, call yii\base\Component::detachBehavior() with
the name associated with the behavior:

$component->detachBehavior('myBehavior1');

You may also detach all behaviors:

$component->detachBehaviors();

5.4.6 Using TimestampBehavior

To wrap up, let's take a look at yii\behaviors\TimestampBehavior. This
behavior supports automatically updating the timestamp attributes of an
yii\db\ActiveRecord model anytime the model is saved via insert(), update
() or save() method.

First, attach this behavior to the yii\db\ActiveRecord class that you
plan to use:

5.4. BEHAVIORS 211

namespace app\models\User;

use yii\db\ActiveRecord;

use yii\behaviors\TimestampBehavior;

class User extends ActiveRecord

{

// ...

public function behaviors()

{

return [

[

'class' => TimestampBehavior::className(),

'attributes' => [

ActiveRecord::EVENT_BEFORE_INSERT => ['created_at', '

updated_at'],

ActiveRecord::EVENT_BEFORE_UPDATE => ['updated_at'],

],

// if you're using datetime instead of UNIX timestamp:

// 'value' => new Expression('NOW()'),

],

];

}

}

The behavior con�guration above speci�es that when the record is being:

• inserted, the behavior should assign the current UNIX timestamp to
the created_at and updated_at attributes

• updated, the behavior should assign the current UNIX timestamp to
the updated_at attribute

Note: For the above implementation to work with MySQL data-
base, please declare the columns(created_at, updated_at) as int(11)
for being UNIX timestamp.

With that code in place, if you have a User object and try to save it, you will
�nd its created_at and updated_at are automatically �lled with the current
UNIX timestamp:

$user = new User;

$user->email = 'test@example.com';

$user->save();

echo $user->created_at; // shows the current timestamp

The yii\behaviors\TimestampBehavior also o�ers a useful method yii

\behaviors\TimestampBehavior::touch(), which will assign the current
timestamp to a speci�ed attribute and save it to the database:

$user->touch('login_time');

212 CHAPTER 5. KEY CONCEPTS

5.4.7 Other behaviors

There are several built-in and external behaviors available:

• yii\behaviors\BlameableBehavior - automatically �lls the speci�ed
attributes with the current user ID.

• yii\behaviors\SluggableBehavior - automatically �lls the speci�ed
attribute with a value that can be used as a slug in a URL.

• yii\behaviors\AttributeBehavior - automatically assigns a speci�ed
value to one or multiple attributes of an ActiveRecord object when cer-
tain events happen.

• yii2tech\ar\softdelete\SoftDeleteBehavior3 - provides methods to soft-
delete and soft-restore ActiveRecord i.e. set �ag or status which marks
record as deleted.

• yii2tech\ar\position\PositionBehavior4 - allows managing records or-
der in an integer �eld by providing reordering methods.

5.4.8 Comparing Behaviors with Traits

While behaviors are similar to traits5 in that they both �inject� their prop-
erties and methods to the primary class, they di�er in many aspects. As
explained below, they both have pros and cons. They are more like comple-
ments to each other rather than alternatives.

Reasons to Use Behaviors

Behavior classes, like normal classes, support inheritance. Traits, on the
other hand, can be considered as language-supported copy and paste. They
do not support inheritance.

Behaviors can be attached and detached to a component dynamically
without requiring modi�cation of the component class. To use a trait, you
must modify the code of the class using it.

Behaviors are con�gurable while traits are not.

Behaviors can customize the code execution of a component by respond-
ing to its events.

When there can be name con�icts among di�erent behaviors attached to
the same component, the con�icts are automatically resolved by prioritizing
the behavior attached to the component �rst. Name con�icts caused by dif-
ferent traits requires manual resolution by renaming the a�ected properties
or methods.

3https://github.com/yii2tech/ar-softdelete
4https://github.com/yii2tech/ar-position
5http://www.php.net/traits

https://github.com/yii2tech/ar-softdelete
https://github.com/yii2tech/ar-position
http://www.php.net/traits

5.5. CONFIGURATIONS 213

Reasons to Use Traits

Traits are much more e�cient than behaviors as behaviors are objects that
take both time and memory.

IDEs are more friendly to traits as they are a native language construct.

5.5 Con�gurations

Con�gurations are widely used in Yii when creating new objects or initial-
izing existing objects. Con�gurations usually include the class name of the
object being created, and a list of initial values that should be assigned to
the object's properties. Con�gurations may also include a list of handlers
that should be attached to the object's events and/or a list of behaviors that
should also be attached to the object.

In the following, a con�guration is used to create and initialize a database
connection:

$config = [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=127.0.0.1;dbname=demo',

'username' => 'root',

'password' => '',

'charset' => 'utf8',

];

$db = Yii::createObject($config);

The Yii::createObject() method takes a con�guration array as its argu-
ment, and creates an object by instantiating the class named in the con�g-
uration. When the object is instantiated, the rest of the con�guration will
be used to initialize the object's properties, event handlers, and behaviors.

If you already have an object, you may use Yii::configure() to initial-
ize the object's properties with a con�guration array:

Yii::configure($object, $config);

Note that, in this case, the con�guration array should not contain a class

element.

5.5.1 Con�guration Format

The format of a con�guration can be formally described as:

[

'class' => 'ClassName',

'propertyName' => 'propertyValue',

'on eventName' => $eventHandler,

'as behaviorName' => $behaviorConfig,

]

where

214 CHAPTER 5. KEY CONCEPTS

• The class element speci�es a fully quali�ed class name for the object
being created.

• The propertyName elements specify the initial values for the named prop-
erty. The keys are the property names, and the values are the corres-
ponding initial values. Only public member variables and properties
de�ned by getters/setters can be con�gured.

• The on eventName elements specify what handlers should be attached to
the object's events. Notice that the array keys are formed by pre�xing
event names with on . Please refer to the Events section for supported
event handler formats.

• The as behaviorName elements specify what behaviors should be at-
tached to the object. Notice that the array keys are formed by pre-
�xing behavior names with as ; the value, $behaviorConfig, represents
the con�guration for creating a behavior, like a normal con�guration
described here.

Below is an example showing a con�guration with initial property values,
event handlers, and behaviors:

[

'class' => 'app\components\SearchEngine',

'apiKey' => 'xxxxxxxx',

'on search' => function ($event) {

Yii::info("Keyword searched: " . $event->keyword);

},

'as indexer' => [

'class' => 'app\components\IndexerBehavior',

// ... property init values ...

],

]

5.5.2 Using Con�gurations

Con�gurations are used in many places in Yii. At the beginning of this
section, we have shown how to create an object according to a con�gura-
tion by using Yii::createObject(). In this subsection, we will describe
application con�gurations and widget con�gurations - two major usages of
con�gurations.

Application Con�gurations

The con�guration for an application is probably one of the most complex ar-
rays in Yii. This is because the yii\web\Application class has a lot of con-
�gurable properties and events. More importantly, its yii\web\Application
::components property can receive an array of con�gurations for creating
components that are registered through the application. The following is an
abstract from the application con�guration �le for the Basic Project Tem-
plate.

5.5. CONFIGURATIONS 215

$config = [

'id' => 'basic',

'basePath' => dirname(__DIR__),

'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php'),

'components' => [

'cache' => [

'class' => 'yii\caching\FileCache',

],

'mailer' => [

'class' => 'yii\swiftmailer\Mailer',

],

'log' => [

'class' => 'yii\log\Dispatcher',

'traceLevel' => YII_DEBUG ? 3 : 0,

'targets' => [

[

'class' => 'yii\log\FileTarget',

],

],

],

'db' => [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=localhost;dbname=stay2',

'username' => 'root',

'password' => '',

'charset' => 'utf8',

],

],

];

The con�guration does not have a class key. This is because it is used as
follows in an entry script, where the class name is already given,

(new yii\web\Application($config))->run();

More details about con�guring the components property of an application can
be found in the Applications section and the Service Locator section.

Since version 2.0.11, the application con�guration supports Dependency
Injection Container con�guration using container property. For example:

$config = [

'id' => 'basic',

'basePath' => dirname(__DIR__),

'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php'),

'container' => [

'definitions' => [

'yii\widgets\LinkPager' => ['maxButtonCount' => 5]

],

'singletons' => [

// Dependency Injection Container singletons configuration

]

]

];

216 CHAPTER 5. KEY CONCEPTS

To know more about the possible values of definitions and singletons con�g-
uration arrays and real-life examples, please read Advanced Practical Usage
subsection of the Dependency Injection Container article.

Widget Con�gurations

When using widgets, you often need to use con�gurations to customize the
widget properties. Both of the yii\base\Widget::widget() and yii\base

\Widget::begin() methods can be used to create a widget. They take a
con�guration array, like the following,

use yii\widgets\Menu;

echo Menu::widget([

'activateItems' => false,

'items' => [

['label' => 'Home', 'url' => ['site/index']],

['label' => 'Products', 'url' => ['product/index']],

['label' => 'Login', 'url' => ['site/login'], 'visible' => Yii::$app

->user->isGuest],

],

]);

The above code creates a Menu widget and initializes its activateItems property
to be false. The items property is also con�gured with menu items to be
displayed.

Note that because the class name is already given, the con�guration array
should NOT have the class key.

5.5.3 Con�guration Files

When a con�guration is very complex, a common practice is to store it in
one or multiple PHP �les, known as con�guration �les. A con�guration �le
returns a PHP array representing the con�guration. For example, you may
keep an application con�guration in a �le named web.php, like the following,

return [

'id' => 'basic',

'basePath' => dirname(__DIR__),

'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php'),

'components' => require(__DIR__ . '/components.php'),

];

Because the components con�guration is complex too, you store it in a separate
�le called components.php and �require� this �le in web.php as shown above. The
content of components.php is as follows,

return [

'cache' => [

'class' => 'yii\caching\FileCache',

],

5.5. CONFIGURATIONS 217

'mailer' => [

'class' => 'yii\swiftmailer\Mailer',

],

'log' => [

'class' => 'yii\log\Dispatcher',

'traceLevel' => YII_DEBUG ? 3 : 0,

'targets' => [

[

'class' => 'yii\log\FileTarget',

],

],

],

'db' => [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=localhost;dbname=stay2',

'username' => 'root',

'password' => '',

'charset' => 'utf8',

],

];

To get a con�guration stored in a con�guration �le, simply �require� it, like
the following:

$config = require('path/to/web.php');

(new yii\web\Application($config))->run();

5.5.4 Default Con�gurations

The Yii::createObject() method is implemented based on a dependency
injection container. It allows you to specify a set of the so-called default

con�gurations which will be applied to ALL instances of the speci�ed classes
when they are being created using Yii::createObject(). The default con-
�gurations can be speci�ed by calling Yii::$container->set() in the boot-
strapping code.

For example, if you want to customize yii\widgets\LinkPager so that
ALL link pagers will show at most 5 page buttons (the default value is 10),
you may use the following code to achieve this goal:

\Yii::$container->set('yii\widgets\LinkPager', [

'maxButtonCount' => 5,

]);

Without using default con�gurations, you would have to con�gure maxButtonCount
in every place where you use link pagers.

5.5.5 Environment Constants

Con�gurations often vary according to the environment in which an applic-
ation runs. For example, in development environment, you may want to use
a database named mydb_dev, while on production server you may want to use

218 CHAPTER 5. KEY CONCEPTS

the mydb_prod database. To facilitate switching environments, Yii provides
a constant named YII_ENV that you may de�ne in the entry script of your
application. For example,

defined('YII_ENV') or define('YII_ENV', 'dev');

You may de�ne YII_ENV as one of the following values:

• prod: production environment. The constant YII_ENV_PROD will evaluate
as true. This is the default value of YII_ENV if you do not de�ne it.

• dev: development environment. The constant YII_ENV_DEV will evaluate
as true.

• test: testing environment. The constant YII_ENV_TEST will evaluate as
true.

With these environment constants, you may specify your con�gurations con-
ditionally based on the current environment. For example, your application
con�guration may contain the following code to enable the debug toolbar
and debugger in development environment.

$config = [...];

if (YII_ENV_DEV) {

// configuration adjustments for 'dev' environment

$config['bootstrap'][] = 'debug';

$config['modules']['debug'] = 'yii\debug\Module';

}

return $config;

5.6 Aliases

Aliases are used to represent �le paths or URLs so that you don't have to
hard-code absolute paths or URLs in your project. An alias must start with
the @ character to be di�erentiated from normal �le paths and URLs. Alias
de�ned without leading @ will be pre�xed with @ character.

Yii has many pre-de�ned aliases already available. For example, the alias
@yii represents the installation path of the Yii framework; @web represents
the base URL for the currently running Web application.

5.6.1 De�ning Aliases

You can de�ne an alias for a �le path or URL by calling Yii::setAlias():

// an alias of a file path

Yii::setAlias('@foo', '/path/to/foo');

// an alias of a URL

Yii::setAlias('@bar', 'http://www.example.com');

5.6. ALIASES 219

Note: The �le path or URL being aliased may not necessarily
refer to an existing �le or resource.

Given a de�ned alias, you may derive a new alias (without the need of calling
Yii::setAlias()) by appending a slash / followed with one or more path
segments. The aliases de�ned via Yii::setAlias() becomes the root alias,
while aliases derived from it are derived aliases. For example, @foo is a root
alias, while @foo/bar/file.php is a derived alias.

You can de�ne an alias using another alias (either root or derived):

Yii::setAlias('@foobar', '@foo/bar');

Root aliases are usually de�ned during the bootstrapping stage. For ex-
ample, you may call Yii::setAlias() in the entry script. For convenience,
Application provides a writable property named aliases that you can con-
�gure in the application con�guration:

return [

// ...

'aliases' => [

'@foo' => '/path/to/foo',

'@bar' => 'http://www.example.com',

],

];

5.6.2 Resolving Aliases

You can call Yii::getAlias() to resolve a root alias into the �le path or
URL it represents. The same method can also resolve a derived alias into
the corresponding �le path or URL:

echo Yii::getAlias('@foo'); // displays: /path/to/foo

echo Yii::getAlias('@bar'); // displays: http://www.example.

com

echo Yii::getAlias('@foo/bar/file.php'); // displays: /path/to/foo/bar/file

.php

The path/URL represented by a derived alias is determined by replacing the
root alias part with its corresponding path/URL in the derived alias.

Note: The Yii::getAlias() method does not check whether
the resulting path/URL refers to an existing �le or resource.

A root alias may also contain slash / characters. The Yii::getAlias()

method is intelligent enough to tell which part of an alias is a root alias and
thus correctly determines the corresponding �le path or URL:

Yii::setAlias('@foo', '/path/to/foo');

Yii::setAlias('@foo/bar', '/path2/bar');

Yii::getAlias('@foo/test/file.php'); // displays: /path/to/foo/test/file.

php

Yii::getAlias('@foo/bar/file.php'); // displays: /path2/bar/file.php

220 CHAPTER 5. KEY CONCEPTS

If @foo/bar is not de�ned as a root alias, the last statement would display
/path/to/foo/bar/file.php.

5.6.3 Using Aliases

Aliases are recognized in many places in Yii without needing to call Yii::
getAlias() to convert them into paths or URLs. For example, yii\caching
\FileCache::cachePath can accept both a �le path and an alias represent-
ing a �le path, thanks to the @ pre�x which allows it to di�erentiate a �le
path from an alias.

use yii\caching\FileCache;

$cache = new FileCache([

'cachePath' => '@runtime/cache',

]);

Please pay attention to the API documentation to see if a property or method
parameter supports aliases.

5.6.4 Prede�ned Aliases

Yii prede�nes a set of aliases to easily reference commonly used �le paths
and URLs:

• @yii, the directory where the BaseYii.php �le is located (also called the
framework directory).

• @app, the yii\base\Application::basePath of the currently running
application.

• @runtime, the yii\base\Application::runtimePath of the currently
running application. Defaults to @app/runtime.

• @webroot, the Web root directory of the currently running Web applic-
ation. It is determined based on the directory containing the entry
script.

• @web, the base URL of the currently running Web application. It has
the same value as yii\web\Request::baseUrl.

• @vendor, the yii\base\Application::vendorPath. Defaults to @app/

vendor.
• @bower, the root directory that contains bower packages6. Defaults to

@vendor/bower.
• @npm, the root directory that contains npm packages7. Defaults to

@vendor/npm.

The @yii alias is de�ned when you include the Yii.php �le in your entry
script. The rest of the aliases are de�ned in the application constructor
when applying the application con�guration.

6http://bower.io/
7https://www.npmjs.org/

http://bower.io/
https://www.npmjs.org/

5.7. CLASS AUTOLOADING 221

5.6.5 Extension Aliases

An alias is automatically de�ned for each extension that is installed via
Composer. Each alias is named after the root namespace of the extension as
declared in its composer.json �le, and each alias represents the root directory
of the package. For example, if you install the yiisoft/yii2-jui extension, you
will automatically have the alias @yii/jui de�ned during the bootstrapping
stage, equivalent to:

Yii::setAlias('@yii/jui', 'VendorPath/yiisoft/yii2-jui');

5.7 Class Autoloading

Yii relies on the class autoloading mechanism8 to locate and include all
required class �les. It provides a high-performance class autoloader that is
compliant with the PSR-4 standard9. The autoloader is installed when you
include the Yii.php �le.

Note: For simplicity of description, in this section we will only
talk about autoloading of classes. However, keep in mind that the
content we are describing here applies to autoloading of interfaces
and traits as well.

5.7.1 Using the Yii Autoloader

To make use of the Yii class autoloader, you should follow two simple rules
when creating and naming your classes:

• Each class must be under a namespace10 (e.g. foo\bar\MyClass)
• Each class must be saved in an individual �le whose path is determined
by the following algorithm:

// $className is a fully qualified class name without the leading backslash

$classFile = Yii::getAlias('@' . str_replace('\\', '/', $className) . '.php'

);

For example, if a class name and namespace is foo\bar\MyClass, the alias for
the corresponding class �le path would be @foo/bar/MyClass.php. In order for
this alias to be resolvable into a �le path, either @foo or @foo/bar must be a
root alias.

When using the Basic Project Template, you may put your classes under
the top-level namespace app so that they can be autoloaded by Yii without
the need of de�ning a new alias. This is because @app is a prede�ned alias,

8http://www.php.net/manual/en/language.oop5.autoload.php
9https://github.com/php-fig/fig-standards/blob/master/accepted/

PSR-4-autoloader.md
10http://php.net/manual/en/language.namespaces.php

http://www.php.net/manual/en/language.oop5.autoload.php
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
http://php.net/manual/en/language.namespaces.php

222 CHAPTER 5. KEY CONCEPTS

and a class name like app\components\MyClass can be resolved into the class
�le AppBasePath/components/MyClass.php, according to the algorithm just de-
scribed.

In the Advanced Project Template11, each tier has its own root alias. For
example, the front-end tier has a root alias @frontend, while the back-end tier
root alias is @backend. As a result, you may put the front-end classes under
the namespace frontend while the back-end classes are under backend. This
will allow these classes to be autoloaded by the Yii autoloader.

5.7.2 Class Map

The Yii class autoloader supports the class map feature, which maps class
names to the corresponding class �le paths. When the autoloader is loading a
class, it will �rst check if the class is found in the map. If so, the correspond-
ing �le path will be included directly without further checks. This makes
class autoloading super fast. In fact, all core Yii classes are autoloaded this
way.

You may add a class to the class map, stored in Yii::$classMap, using:

Yii::$classMap['foo\bar\MyClass'] = 'path/to/MyClass.php';

Aliases can be used to specify class �le paths. You should set the class map
in the bootstrapping process so that the map is ready before your classes are
used.

5.7.3 Using Other Autoloaders

Because Yii embraces Composer as a package dependency manager, it is
recommended that you also install the Composer autoloader. If you are
using 3rd-party libraries that have their own autoloaders, you should also
install those.

When using the Yii autoloader together with other autoloaders, you
should include the Yii.php �le after all other autoloaders are installed. This
will make the Yii autoloader the �rst one responding to any class autoloading
request. For example, the following code is extracted from the entry script of
the Basic Project Template. The �rst line installs the Composer autoloader,
while the second line installs the Yii autoloader:

require(__DIR__ . '/../vendor/autoload.php');

require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

You may use the Composer autoloader alone without the Yii autoloader.
However, by doing so, the performance of your class autoloading may be
degraded, and you must follow the rules set by Composer in order for your
classes to be autoloadable.

11https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/

README.md

https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md

5.8. SERVICE LOCATOR 223

Info: If you do not want to use the Yii autoloader, you must
create your own version of the Yii.php �le and include it in your
entry script.

5.7.4 Autoloading Extension Classes

The Yii autoloader is capable of autoloading extension classes. The sole
requirement is that an extension speci�es the autoload section correctly in its
composer.json �le. Please refer to the Composer documentation12 for more
details about specifying autoload.

In case you do not use the Yii autoloader, the Composer autoloader can
still autoload extension classes for you.

5.8 Service Locator

A service locator is an object that knows how to provide all sorts of services
(or components) that an application might need. Within a service locator,
each component exists as only a single instance, uniquely identi�ed by an
ID. You use the ID to retrieve a component from the service locator.

In Yii, a service locator is simply an instance of yii\di\ServiceLocator
or a child class.

The most commonly used service locator in Yii is the application ob-
ject, which can be accessed through \Yii::$app. The services it provides are
called application components, such as the request, response, and urlManager

components. You may con�gure these components, or even replace them
with your own implementations, easily through functionality provided by
the service locator.

Besides the application object, each module object is also a service loc-
ator.

To use a service locator, the �rst step is to register components with it.
A component can be registered via yii\di\ServiceLocator::set(). The
following code shows di�erent ways of registering components:

use yii\di\ServiceLocator;

use yii\caching\FileCache;

$locator = new ServiceLocator;

// register "cache" using a class name that can be used to create a

component

$locator->set('cache', 'yii\caching\ApcCache');

// register "db" using a configuration array that can be used to create a

component

$locator->set('db', [

12https://getcomposer.org/doc/04-schema.md#autoload

https://getcomposer.org/doc/04-schema.md#autoload

224 CHAPTER 5. KEY CONCEPTS

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=localhost;dbname=demo',

'username' => 'root',

'password' => '',

]);

// register "search" using an anonymous function that builds a component

$locator->set('search', function () {

return new app\components\SolrService;

});

// register "pageCache" using a component

$locator->set('pageCache', new FileCache);

Once a component has been registered, you can access it using its ID, in one
of the two following ways:

$cache = $locator->get('cache');

// or alternatively

$cache = $locator->cache;

As shown above, yii\di\ServiceLocator allows you to access a component
like a property using the component ID. When you access a component for
the �rst time, yii\di\ServiceLocator will use the component registration
information to create a new instance of the component and return it. Later,
if the component is accessed again, the service locator will return the same
instance.

You may use yii\di\ServiceLocator::has() to check if a component
ID has already been registered. If you call yii\di\ServiceLocator::get()
with an invalid ID, an exception will be thrown.

Because service locators are often being created with con�gurations,
a writable property named yii\di\ServiceLocator::setComponents() is
provided. This allows you to con�gure and register multiple components at
once. The following code shows a con�guration array that can be used to
con�gure a service locator (e.g. an application) with the db, cache and search

components:

return [

// ...

'components' => [

'db' => [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=localhost;dbname=demo',

'username' => 'root',

'password' => '',

],

'cache' => 'yii\caching\ApcCache',

'search' => function () {

$solr = new app\components\SolrService('127.0.0.1');

// ... other initializations ...

return $solr;

},

5.9. DEPENDENCY INJECTION CONTAINER 225

],

];

In the above, there is an alternative way to con�gure the search compon-
ent. Instead of directly writing a PHP callback which builds a SolrService

instance, you can use a static class method to return such a callback, like
shown as below:

class SolrServiceBuilder

{

public static function build($ip)

{

return function () use ($ip) {

$solr = new app\components\SolrService($ip);

// ... other initializations ...

return $solr;

};

}

}

return [

// ...

'components' => [

// ...

'search' => SolrServiceBuilder::build('127.0.0.1'),

],

];

This alternative approach is most preferable when you are releasing a Yii
component which encapsulates some non-Yii 3rd-party library. You use the
static method like shown above to represent the complex logic of building
the 3rd-party object, and the user of your component only needs to call the
static method to con�gure the component.

5.9 Dependency Injection Container

A dependency injection (DI) container is an object that knows how to instan-
tiate and con�gure objects and all their dependent objects. Martin Fowler's
article13 has well explained why DI container is useful. Here we will mainly
explain the usage of the DI container provided by Yii.

5.9.1 Dependency Injection

Yii provides the DI container feature through the class yii\di\Container.
It supports the following kinds of dependency injection:

• Constructor injection;
• Method injection;
• Setter and property injection;

13http://martinfowler.com/articles/injection.html

http://martinfowler.com/articles/injection.html

226 CHAPTER 5. KEY CONCEPTS

• PHP callable injection;

Constructor Injection

The DI container supports constructor injection with the help of type hints
for constructor parameters. The type hints tell the container which classes
or interfaces are dependent when it is used to create a new object. The
container will try to get the instances of the dependent classes or interfaces
and then inject them into the new object through the constructor. For
example,

class Foo

{

public function __construct(Bar $bar)

{

}

}

$foo = $container->get('Foo');

// which is equivalent to the following:

$bar = new Bar;

$foo = new Foo($bar);

Method Injection

Usually the dependencies of a class are passed to the constructor and are
available inside of the class during the whole lifecycle. With Method Injection
it is possible to provide a dependency that is only needed by a single method
of the class and passing it to the constructor may not be possible or may
cause too much overhead in the majority of use cases.

A class method can be de�ned like the doSomething() method in the fol-
lowing example:

class MyClass extends \yii\base\Component

{

public function __construct(/*Some lightweight dependencies here*/,

$config = [])

{

// ...

}

public function doSomething($param1, \my\heavy\Dependency $something)

{

// do something with $something

}

}

You may call that method either by passing an instance of \my\heavy\Dependency
yourself or using yii\di\Container::invoke() like the following:

$obj = new MyClass(/*...*/);

5.9. DEPENDENCY INJECTION CONTAINER 227

Yii::$container->invoke([$obj, 'doSomething'], ['param1' => 42]); //

$something will be provided by the DI container

Setter and Property Injection

Setter and property injection is supported through con�gurations. When
registering a dependency or when creating a new object, you can provide a
con�guration which will be used by the container to inject the dependencies
through the corresponding setters or properties. For example,

use yii\base\Object;

class Foo extends Object

{

public $bar;

private $_qux;

public function getQux()

{

return $this->_qux;

}

public function setQux(Qux $qux)

{

$this->_qux = $qux;

}

}

$container->get('Foo', [], [

'bar' => $container->get('Bar'),

'qux' => $container->get('Qux'),

]);

Info: The yii\di\Container::get() method takes its third
parameter as a con�guration array that should be applied to
the object being created. If the class implements the yii\base

\Configurable interface (e.g. yii\base\Object), the con�g-
uration array will be passed as the last parameter to the class
constructor; otherwise, the con�guration will be applied after the
object is created.

PHP Callable Injection

In this case, the container will use a registered PHP callable to build new
instances of a class. Each time when yii\di\Container::get() is called,
the corresponding callable will be invoked. The callable is responsible to
resolve the dependencies and inject them appropriately to the newly created
objects. For example,

228 CHAPTER 5. KEY CONCEPTS

$container->set('Foo', function () {

$foo = new Foo(new Bar);

// ... other initializations ...

return $foo;

});

$foo = $container->get('Foo');

To hide the complex logic for building a new object, you may use a static
class method as callable. For example,

class FooBuilder

{

public static function build()

{

$foo = new Foo(new Bar);

// ... other initializations ...

return $foo;

}

}

$container->set('Foo', ['app\helper\FooBuilder', 'build']);

$foo = $container->get('Foo');

By doing so, the person who wants to con�gure the Foo class no longer needs
to be aware of how it is built.

5.9.2 Registering Dependencies

You can use yii\di\Container::set() to register dependencies. The re-
gistration requires a dependency name as well as a dependency de�nition. A
dependency name can be a class name, an interface name, or an alias name;
and a dependency de�nition can be a class name, a con�guration array, or a
PHP callable.

$container = new \yii\di\Container;

// register a class name as is. This can be skipped.

$container->set('yii\db\Connection');

// register an interface

// When a class depends on the interface, the corresponding class

// will be instantiated as the dependent object

$container->set('yii\mail\MailInterface', 'yii\swiftmailer\Mailer');

// register an alias name. You can use $container->get('foo')

// to create an instance of Connection

$container->set('foo', 'yii\db\Connection');

// register a class with configuration. The configuration

// will be applied when the class is instantiated by get()

$container->set('yii\db\Connection', [

5.9. DEPENDENCY INJECTION CONTAINER 229

'dsn' => 'mysql:host=127.0.0.1;dbname=demo',

'username' => 'root',

'password' => '',

'charset' => 'utf8',

]);

// register an alias name with class configuration

// In this case, a "class" element is required to specify the class

$container->set('db', [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=127.0.0.1;dbname=demo',

'username' => 'root',

'password' => '',

'charset' => 'utf8',

]);

// register a PHP callable

// The callable will be executed each time when $container->get('db') is

called

$container->set('db', function ($container, $params, $config) {

return new \yii\db\Connection($config);

});

// register a component instance

// $container->get('pageCache') will return the same instance each time it

is called

$container->set('pageCache', new FileCache);

Tip: If a dependency name is the same as the corresponding
dependency de�nition, you do not need to register it with the DI
container.

A dependency registered via set() will generate an instance each time the
dependency is needed. You can use yii\di\Container::setSingleton()

to register a dependency that only generates a single instance:

$container->setSingleton('yii\db\Connection', [

'dsn' => 'mysql:host=127.0.0.1;dbname=demo',

'username' => 'root',

'password' => '',

'charset' => 'utf8',

]);

5.9.3 Resolving Dependencies

Once you have registered dependencies, you can use the DI container to
create new objects, and the container will automatically resolve dependencies
by instantiating them and injecting them into the newly created objects. The
dependency resolution is recursive, meaning that if a dependency has other
dependencies, those dependencies will also be resolved automatically.

230 CHAPTER 5. KEY CONCEPTS

You can use yii\di\Container::get() to either create or get object in-
stance. The method takes a dependency name, which can be a class name, an
interface name or an alias name. The dependency name may be registered via
yii\di\Container::set() or yii\di\Container::setSingleton(). You
may optionally provide a list of class constructor parameters and a con�g-
uration to con�gure the newly created object.

For example:

// "db" is a previously registered alias name

$db = $container->get('db');

// equivalent to: $engine = new \app\components\SearchEngine($apiKey,

$apiSecret, ['type' => 1]);

$engine = $container->get('app\components\SearchEngine', [$apiKey,

$apiSecret], ['type' => 1]);

Behind the scene, the DI container does much more work than just creating
a new object. The container will �rst inspect the class constructor to �nd
out dependent class or interface names and then automatically resolve those
dependencies recursively.

The following code shows a more sophisticated example. The UserLister

class depends on an object implementing the UserFinderInterface interface;
the UserFinder class implements this interface and depends on a Connection

object. All these dependencies are declared through type hinting of the
class constructor parameters. With property dependency registration, the
DI container is able to resolve these dependencies automatically and creates
a new UserLister instance with a simple call of get('userLister').

namespace app\models;

use yii\base\Object;

use yii\db\Connection;

use yii\di\Container;

interface UserFinderInterface

{

function findUser();

}

class UserFinder extends Object implements UserFinderInterface

{

public $db;

public function __construct(Connection $db, $config = [])

{

$this->db = $db;

parent::__construct($config);

}

public function findUser()

{

5.9. DEPENDENCY INJECTION CONTAINER 231

}

}

class UserLister extends Object

{

public $finder;

public function __construct(UserFinderInterface $finder, $config = [])

{

$this->finder = $finder;

parent::__construct($config);

}

}

$container = new Container;

$container->set('yii\db\Connection', [

'dsn' => '...',

]);

$container->set('app\models\UserFinderInterface', [

'class' => 'app\models\UserFinder',

]);

$container->set('userLister', 'app\models\UserLister');

$lister = $container->get('userLister');

// which is equivalent to:

$db = new \yii\db\Connection(['dsn' => '...']);

$finder = new UserFinder($db);

$lister = new UserLister($finder);

5.9.4 Practical Usage

Yii creates a DI container when you include the Yii.php �le in the entry script
of your application. The DI container is accessible via Yii::$container.
When you call Yii::createObject(), the method will actually call the
container's yii\di\Container::get() method to create a new object. As
aforementioned, the DI container will automatically resolve the dependen-
cies (if any) and inject them into obtained object. Because Yii uses Yii::
createObject() in most of its core code to create new objects, this means
you can customize the objects globally by dealing with Yii::$container.

For example, let's customize globally the default number of pagination
buttons of yii\widgets\LinkPager.

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);

Now if you use the widget in a view with the following code, the maxButtonCount
property will be initialized as 5 instead of the default value 10 as de�ned in
the class.

echo \yii\widgets\LinkPager::widget();

232 CHAPTER 5. KEY CONCEPTS

You can still override the value set via DI container, though:

echo \yii\widgets\LinkPager::widget(['maxButtonCount' => 20]);

Note: Properties given in the widget call will always override
the de�nition in the DI container. Even if you specify an array,
e.g. 'options' => ['id' => 'mypager'] these will not be merged
with other options but replace them.

Another example is to take advantage of the automatic constructor injection
of the DI container. Assume your controller class depends on some other
objects, such as a hotel booking service. You can declare the dependency
through a constructor parameter and let the DI container to resolve it for
you.

namespace app\controllers;

use yii\web\Controller;

use app\components\BookingInterface;

class HotelController extends Controller

{

protected $bookingService;

public function __construct($id, $module, BookingInterface

$bookingService, $config = [])

{

$this->bookingService = $bookingService;

parent::__construct($id, $module, $config);

}

}

If you access this controller from browser, you will see an error complaining
the BookingInterface cannot be instantiated. This is because you need to tell
the DI container how to deal with this dependency:

\Yii::$container->set('app\components\BookingInterface', 'app\components\

BookingService');

Now if you access the controller again, an instance of app\components\BookingService
will be created and injected as the 3rd parameter to the controller's con-
structor.

5.9.5 Advanced Practical Usage

Say we work on API application and have:

• app\components\Request class that extends yii\web\Request and provides
additional functionality

• app\components\Response class that extends yii\web\Response and should
have format property set to json on creation

5.9. DEPENDENCY INJECTION CONTAINER 233

• app\storage\FileStorage and app\storage\DocumentsReader classes that im-
plement some logic on working with documents that are located in some
�le storage:

class FileStorage

{

public function __contruct($root) {

// whatever

}

}

class DocumentsReader

{

public function __contruct(FileStorage $fs) {

// whatever

}

}

It is possible to con�gure multiple de�nitions at once, passing con�guration
array to yii\di\Container::setDefinitions() or yii\di\Container::

setSingletons() method. Iterating over the con�guration array, the meth-
ods will call yii\di\Container::set() or yii\di\Container::setSingleton()
respectively for each item.

The con�guration array format is:
• key: class name, interface name or alias name. The key will be passed
to the yii\di\Container::set() method as a �rst argument $class.

• value: the de�nition associated with $class. Possible values are de-
scribed in yii\di\Container::set() documentation for the $definition
parameter. Will be passed to the set() method as the second argu-
ment $definition.

For example, let's con�gure our container to follow the aforementioned re-
quirements:

$container->setDefinitions([

'yii\web\Request' => 'app\components\Request',

'yii\web\Response' => [

'class' => 'app\components\Response',

'format' => 'json'

],

'app\storage\DocumentsReader' => function () {

$fs = new app\storage\FileStorage('/var/tempfiles');

return new app\storage\DocumentsReader($fs);

}

]);

$reader = $container->get('app\storage\DocumentsReader);

// Will create DocumentReader object with its dependencies as described in

the config

Tip: Container may be con�gured in declarative style using ap-
plication con�guration since version 2.0.11. Check out the Ap-

234 CHAPTER 5. KEY CONCEPTS

plication Con�gurations subsection of the Con�gurations guide
article.

Everything works, but in case we need to create DocumentWriter class, we shall
copy-paste the line that creates FileStorage object, that is not the smartest
way, obviously.

As described in the Resolving Dependencies subsection, yii\di\Container
::set() and yii\di\Container::setSingleton() can optionally take de-
pendency's constructor parameters as a third argument. To set the con-
structor parameters, you may use the following con�guration array format:

• key: class name, interface name or alias name. The key will be passed
to the yii\di\Container::set() method as a �rst argument $class.

• value: array of two elements. The �rst element will be passed to the yii
\di\Container::set() method as the second argument $definition,
the second one � as $params.

Let's modify our example:

$container->setDefinitions([

'tempFileStorage' => [// we've created an alias for convenience

['class' => 'app\storage\FileStorage'],

['/var/tempfiles'] // could be extracted from some config files

],

'app\storage\DocumentsReader' => [

['class' => 'app\storage\DocumentsReader'],

[Instance::of('tempFileStorage')]

],

'app\storage\DocumentsWriter' => [

['class' => 'app\storage\DocumentsWriter'],

[Instance::of('tempFileStorage')]

]

]);

$reader = $container->get('app\storage\DocumentsReader);

// Will behave exactly the same as in the previous example.

You might notice Instance::of('tempFileStorage') notation. It means, that
the yii\di\Container will implicitly provide a dependency registered with
the name of tempFileStorage and pass it as the �rst argument of app\storage
\DocumentsWriter constructor.

Note: yii\di\Container::setDefinitions() and yii\di\Container
::setSingletons() methods are available since version 2.0.11.

Another step on con�guration optimization is to register some dependencies
as singletons. A dependency registered via yii\di\Container::set() will
be instantiated each time it is needed. Some classes do not change the state
during runtime, therefore they may be registered as singletons in order to
increase the application performance.

5.9. DEPENDENCY INJECTION CONTAINER 235

A good example could be app\storage\FileStorage class, that executes
some operations on �le system with a simple API (e.g. $fs->read(), $fs->

write()). These operations do not change the internal class state, so we can
create its instance once and use it multiple times.

$container->setSingletons([

'tempFileStorage' => [

['class' => 'app\storage\FileStorage'],

['/var/tempfiles']

],

]);

$container->setDefinitions([

'app\storage\DocumentsReader' => [

['class' => 'app\storage\DocumentsReader'],

[Instance::of('tempFileStorage')]

],

'app\storage\DocumentsWriter' => [

['class' => 'app\storage\DocumentsWriter'],

[Instance::of('tempFileStorage')]

]

]);

$reader = $container->get('app\storage\DocumentsReader');

5.9.6 When to Register Dependencies

Because dependencies are needed when new objects are being created, their
registration should be done as early as possible. The following are the re-
commended practices:

• If you are the developer of an application, you can register your de-
pendencies using application con�guration. Please, read the Applica-
tion Con�gurations subsection of the Con�gurations guide article.

• If you are the developer of a redistributable extension, you can register
dependencies in the bootstrapping class of the extension.

5.9.7 Summary

Both dependency injection and service locator are popular design patterns
that allow building software in a loosely-coupled and more testable fash-
ion. We highly recommend you to read Martin's article14 to get a deeper
understanding of dependency injection and service locator.

Yii implements its service locator on top of the dependency injection
(DI) container. When a service locator is trying to create a new object
instance, it will forward the call to the DI container. The latter will resolve
the dependencies automatically as described above.

14http://martinfowler.com/articles/injection.html

http://martinfowler.com/articles/injection.html

236 CHAPTER 5. KEY CONCEPTS

Chapter 6

Working with Databases

6.1 Database Access Objects

Built on top of PDO1, Yii DAO (Database Access Objects) provides an
object-oriented API for accessing relational databases. It is the foundation
for other more advanced database access methods, including query builder
and active record.

When using Yii DAO, you mainly need to deal with plain SQLs and
PHP arrays. As a result, it is the most e�cient way to access databases.
However, because SQL syntax may vary for di�erent databases, using Yii
DAO also means you have to take extra e�ort to create a database-agnostic
application.

Yii DAO supports the following databases out of box:
• MySQL2

• MariaDB3

• SQLite4

• PostgreSQL5

• CUBRID6: version 9.3 or higher.
• Oracle7

• MSSQL8: version 2008 or higher.

Note: New version of pdo_oci for PHP 7 currently exists only
as the source code. Follow instruction provided by community9

to compile it.

1http://www.php.net/manual/en/book.pdo.php
2http://www.mysql.com/
3https://mariadb.com/
4http://sqlite.org/
5http://www.postgresql.org/
6http://www.cubrid.org/
7http://www.oracle.com/us/products/database/overview/index.html
8https://www.microsoft.com/en-us/sqlserver/default.aspx
9https://github.com/yiisoft/yii2/issues/10975#issuecomment-248479268

237

http://www.php.net/manual/en/book.pdo.php
http://www.mysql.com/
https://mariadb.com/
http://sqlite.org/
http://www.postgresql.org/
http://www.cubrid.org/
http://www.oracle.com/us/products/database/overview/index.html
https://www.microsoft.com/en-us/sqlserver/default.aspx
https://github.com/yiisoft/yii2/issues/10975#issuecomment-248479268

238 CHAPTER 6. WORKING WITH DATABASES

6.1.1 Creating DB Connections

To access a database, you �rst need to connect to it by creating an instance
of yii\db\Connection:

$db = new yii\db\Connection([

'dsn' => 'mysql:host=localhost;dbname=example',

'username' => 'root',

'password' => '',

'charset' => 'utf8',

]);

Because a DB connection often needs to be accessed in di�erent places, a
common practice is to con�gure it in terms of an application component like
the following:

return [

// ...

'components' => [

// ...

'db' => [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=localhost;dbname=example',

'username' => 'root',

'password' => '',

'charset' => 'utf8',

],

],

// ...

];

You can then access the DB connection via the expression Yii::$app->db.

Tip: You can con�gure multiple DB application components if
your application needs to access multiple databases.

When con�guring a DB connection, you should always specify its Data
Source Name (DSN) via the yii\db\Connection::dsn property. The format
of DSN varies for di�erent databases. Please refer to the PHP manual10 for
more details. Below are some examples:

• MySQL, MariaDB: mysql:host=localhost;dbname=mydatabase
• SQLite: sqlite:/path/to/database/file

• PostgreSQL: pgsql:host=localhost;port=5432;dbname=mydatabase
• CUBRID: cubrid:dbname=demodb;host=localhost;port=33000
• MS SQL Server (via sqlsrv driver): sqlsrv:Server=localhost;Database=

mydatabase

• MS SQL Server (via dblib driver): dblib:host=localhost;dbname=mydatabase

• MS SQL Server (via mssql driver): mssql:host=localhost;dbname=mydatabase

10http://www.php.net/manual/en/function.PDO-construct.php

http://www.php.net/manual/en/function.PDO-construct.php

6.1. DATABASE ACCESS OBJECTS 239

• Oracle: oci:dbname=//localhost:1521/mydatabase

Note that if you are connecting with a database via ODBC, you should
con�gure the yii\db\Connection::driverName property so that Yii can
know the actual database type. For example,

'db' => [

'class' => 'yii\db\Connection',

'driverName' => 'mysql',

'dsn' => 'odbc:Driver={MySQL};Server=localhost;Database=test',

'username' => 'root',

'password' => '',

],

Besides the yii\db\Connection::dsn property, you often need to con�gure
yii\db\Connection::username and yii\db\Connection::password. Please
refer to yii\db\Connection for the full list of con�gurable properties.

Info: When you create a DB connection instance, the actual con-
nection to the database is not established until you execute the
�rst SQL or you call the yii\db\Connection::open() method
explicitly.

Tip: Sometimes you may want to execute some queries right
after the database connection is established to initialize some en-
vironment variables (e.g., to set the timezone or character set).
You can do so by registering an event handler for the yii\db

\Connection::EVENT_AFTER_OPEN event of the database connec-
tion. You may register the handler directly in the application
con�guration like so:

'db' => [

// ...

'on afterOpen' => function($event) {

// $event->sender refers to the DB connection

$event->sender->createCommand("SET time_zone = 'UTC'")->

execute();

}

],

6.1.2 Executing SQL Queries

Once you have a database connection instance, you can execute a SQL query
by taking the following steps:

1. Create a yii\db\Command with a plain SQL query;

2. Bind parameters (optional);

3. Call one of the SQL execution methods in yii\db\Command.

240 CHAPTER 6. WORKING WITH DATABASES

The following example shows various ways of fetching data from a database:

// return a set of rows. each row is an associative array of column names

and values.

// an empty array is returned if the query returned no results

$posts = Yii::$app->db->createCommand('SELECT * FROM post')

->queryAll();

// return a single row (the first row)

// false is returned if the query has no result

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=1')

->queryOne();

// return a single column (the first column)

// an empty array is returned if the query returned no results

$titles = Yii::$app->db->createCommand('SELECT title FROM post')

->queryColumn();

// return a scalar value

// false is returned if the query has no result

$count = Yii::$app->db->createCommand('SELECT COUNT(*) FROM post')

->queryScalar();

Note: To preserve precision, the data fetched from databases
are all represented as strings, even if the corresponding database
column types are numerical.

Binding Parameters

When creating a DB command from a SQL with parameters, you should
almost always use the approach of binding parameters to prevent SQL in-
jection attacks. For example,

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND

status=:status')

->bindValue(':id', $_GET['id'])

->bindValue(':status', 1)

->queryOne();

In the SQL statement, you can embed one or multiple parameter placeholders
(e.g. :id in the above example). A parameter placeholder should be a string
starting with a colon. You may then call one of the following parameter
binding methods to bind the parameter values:

• yii\db\Command::bindValue(): bind a single parameter value
• yii\db\Command::bindValues(): bind multiple parameter values in
one call

• yii\db\Command::bindParam(): similar to yii\db\Command::bindValue()
but also support binding parameter references.

The following example shows alternative ways of binding parameters:

$params = [':id' => $_GET['id'], ':status' => 1];

6.1. DATABASE ACCESS OBJECTS 241

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND

status=:status')

->bindValues($params)

->queryOne();

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND

status=:status', $params)

->queryOne();

Parameter binding is implemented via prepared statements11. Besides pre-
venting SQL injection attacks, it may also improve performance by preparing
a SQL statement once and executing it multiple times with di�erent para-
meters. For example,

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id');

$post1 = $command->bindValue(':id', 1)->queryOne();

$post2 = $command->bindValue(':id', 2)->queryOne();

// ...

Because yii\db\Command::bindParam() supports binding parameters by
references, the above code can also be written like the following:

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id')

->bindParam(':id', $id);

$id = 1;

$post1 = $command->queryOne();

$id = 2;

$post2 = $command->queryOne();

// ...

Notice that you bind the placeholder to the $id variable before the execution,
and then change the value of that variable before each subsequent execution
(this is often done with loops). Executing queries in this manner can be
vastly more e�cient than running a new query for every di�erent parameter
value.

Executing Non-SELECT Queries

The queryXyz() methods introduced in the previous sections all deal with
SELECT queries which fetch data from databases. For queries that do not
bring back data, you should call the yii\db\Command::execute() method
instead. For example,

Yii::$app->db->createCommand('UPDATE post SET status=1 WHERE id=1')

->execute();

11http://php.net/manual/en/mysqli.quickstart.prepared-statements.php

http://php.net/manual/en/mysqli.quickstart.prepared-statements.php

242 CHAPTER 6. WORKING WITH DATABASES

The yii\db\Command::execute() method returns the number of rows af-
fected by the SQL execution.

For INSERT, UPDATE and DELETE queries, instead of writing plain
SQLs, you may call yii\db\Command::insert(), yii\db\Command::update(),
yii\db\Command::delete(), respectively, to build the corresponding SQLs.
These methods will properly quote table and column names and bind para-
meter values. For example,

// INSERT (table name, column values)

Yii::$app->db->createCommand()->insert('user', [

'name' => 'Sam',

'age' => 30,

])->execute();

// UPDATE (table name, column values, condition)

Yii::$app->db->createCommand()->update('user', ['status' => 1], 'age > 30')-

>execute();

// DELETE (table name, condition)

Yii::$app->db->createCommand()->delete('user', 'status = 0')->execute();

You may also call yii\db\Command::batchInsert() to insert multiple rows
in one shot, which is much more e�cient than inserting one row at a time:

// table name, column names, column values

Yii::$app->db->createCommand()->batchInsert('user', ['name', 'age'], [

['Tom', 30],

['Jane', 20],

['Linda', 25],

])->execute();

Note that the aforementioned methods only create the query and you always
have to call yii\db\Command::execute() to actually run them.

6.1.3 Quoting Table and Column Names

When writing database-agnostic code, properly quoting table and column
names is often a headache because di�erent databases have di�erent name
quoting rules. To overcome this problem, you may use the following quoting
syntax introduced by Yii:

• [[column name]]: enclose a column name to be quoted in double square
brackets;

• {{table name}}: enclose a table name to be quoted in double curly
brackets.

Yii DAO will automatically convert such constructs into the corresponding
quoted column or table names using the DBMS speci�c syntax. For example,

// executes this SQL for MySQL: SELECT COUNT(`id`) FROM `employee`

$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM {{employee

}}")

->queryScalar();

6.1. DATABASE ACCESS OBJECTS 243

Using Table Pre�x

If most of your DB tables names share a common pre�x, you may use the
table pre�x feature provided by Yii DAO.

First, specify the table pre�x via the yii\db\Connection::tablePrefix
property in the application con�g:

return [

// ...

'components' => [

// ...

'db' => [

// ...

'tablePrefix' => 'tbl_',

],

],

];

Then in your code, whenever you need to refer to a table whose name contains
such a pre�x, use the syntax {{%table_name}}. The percentage character will
be automatically replaced with the table pre�x that you have speci�ed when
con�guring the DB connection. For example,

// executes this SQL for MySQL: SELECT COUNT(`id`) FROM `tbl_employee`

$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM {{%employee

}}")

->queryScalar();

6.1.4 Performing Transactions

When running multiple related queries in a sequence, you may need to wrap
them in a transaction to ensure the integrity and consistency of your data-
base. If any of the queries fails, the database will be rolled back to the state
as if none of these queries were executed.

The following code shows a typical way of using transactions:

Yii::$app->db->transaction(function($db) {

$db->createCommand($sql1)->execute();

$db->createCommand($sql2)->execute();

// ... executing other SQL statements ...

});

The above code is equivalent to the following, which gives you more control
about the error handling code:

$db = Yii::$app->db;

$transaction = $db->beginTransaction();

try {

$db->createCommand($sql1)->execute();

$db->createCommand($sql2)->execute();

// ... executing other SQL statements ...

$transaction->commit();

244 CHAPTER 6. WORKING WITH DATABASES

} catch(\Exception $e) {

$transaction->rollBack();

throw $e;

} catch(\Throwable $e) {

$transaction->rollBack();

throw $e;

}

By calling the yii\db\Connection::beginTransaction() method, a new
transaction is started. The transaction is represented as a yii\db\Transaction
object stored in the $transaction variable. Then, the queries being executed
are enclosed in a try...catch... block. If all queries are executed successfully,
the yii\db\Transaction::commit() method is called to commit the trans-
action. Otherwise, if an exception will be triggered and caught, the yii\db
\Transaction::rollBack() method is called to roll back the changes made
by the queries prior to that failed query in the transaction. throw $e will
then re-throw the exception as if we had not caught it, so the normal error
handling process will take care of it.

Note: in the above code we have two catch-blocks for compat-
ibility with PHP 5.x and PHP 7.x. \Exception implements the
\Throwable interface12 since PHP 7.0, so you can skip the part
with \Exception if your app uses only PHP 7.0 and higher.

Specifying Isolation Levels

Yii also supports setting isolation levels13 for your transactions. By default,
when starting a new transaction, it will use the default isolation level set by
your database system. You can override the default isolation level as follows,

$isolationLevel = \yii\db\Transaction::REPEATABLE_READ;

Yii::$app->db->transaction(function ($db) {

....

}, $isolationLevel);

// or alternatively

$transaction = Yii::$app->db->beginTransaction($isolationLevel);

Yii provides four constants for the most common isolation levels:
• \yii\db\Transaction::READ_UNCOMMITTED - the weakest level, Dirty
reads, non-repeatable reads and phantoms may occur.

• \yii\db\Transaction::READ_COMMITTED - avoid dirty reads.
• \yii\db\Transaction::REPEATABLE_READ - avoid dirty reads and non-
repeatable reads.

12http://php.net/manual/en/class.throwable.php
13http://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Isolation_

levels

http://php.net/manual/en/class.throwable.php
http://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Isolation_levels
http://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Isolation_levels

6.1. DATABASE ACCESS OBJECTS 245

• \yii\db\Transaction::SERIALIZABLE - the strongest level, avoids all
of the above named problems.

Besides using the above constants to specify isolation levels, you may also
use strings with a valid syntax supported by the DBMS that you are using.
For example, in PostgreSQL, you may use SERIALIZABLE READ ONLY DEFERRABLE.

Note that some DBMS allow setting the isolation level only for the whole
connection. Any subsequent transactions will get the same isolation level
even if you do not specify any. When using this feature you may need to set
the isolation level for all transactions explicitly to avoid con�icting settings.
At the time of this writing, only MSSQL and SQLite are a�ected by this
limitation.

Note: SQLite only supports two isolation levels, so you can only
use READ UNCOMMITTED and SERIALIZABLE. Usage of other levels will
result in an exception being thrown.

Note: PostgreSQL does not allow setting the isolation level be-
fore the transaction starts so you can not specify the isolation
level directly when starting the transaction. You have to call
yii\db\Transaction::setIsolationLevel() in this case after
the transaction has started.

Nesting Transactions

If your DBMS supports Savepoint, you may nest multiple transactions like
the following:

Yii::$app->db->transaction(function ($db) {

// outer transaction

$db->transaction(function ($db) {

// inner transaction

});

});

Or alternatively,

$db = Yii::$app->db;

$outerTransaction = $db->beginTransaction();

try {

$db->createCommand($sql1)->execute();

$innerTransaction = $db->beginTransaction();

try {

$db->createCommand($sql2)->execute();

$innerTransaction->commit();

} catch (\Exception $e) {

$innerTransaction->rollBack();

throw $e;

} catch (\Throwable $e) {

246 CHAPTER 6. WORKING WITH DATABASES

$innerTransaction->rollBack();

throw $e;

}

$outerTransaction->commit();

} catch (\Exception $e) {

$outerTransaction->rollBack();

throw $e;

} catch (\Throwable $e) {

$outerTransaction->rollBack();

throw $e;

}

6.1.5 Replication and Read-Write Splitting

Many DBMS support database replication14 to get better database availab-
ility and faster server response time. With database replication, data are
replicated from the so-called master servers to slave servers. All writes and
updates must take place on the master servers, while reads may also take
place on the slave servers.

To take advantage of database replication and achieve read-write split-
ting, you can con�gure a yii\db\Connection component like the following:

[

'class' => 'yii\db\Connection',

// configuration for the master

'dsn' => 'dsn for master server',

'username' => 'master',

'password' => '',

// common configuration for slaves

'slaveConfig' => [

'username' => 'slave',

'password' => '',

'attributes' => [

// use a smaller connection timeout

PDO::ATTR_TIMEOUT => 10,

],

],

// list of slave configurations

'slaves' => [

['dsn' => 'dsn for slave server 1'],

['dsn' => 'dsn for slave server 2'],

['dsn' => 'dsn for slave server 3'],

['dsn' => 'dsn for slave server 4'],

],

]

14http://en.wikipedia.org/wiki/Replication_(computing)#Database_

replication

http://en.wikipedia.org/wiki/Replication_(computing)#Database_replication
http://en.wikipedia.org/wiki/Replication_(computing)#Database_replication

6.1. DATABASE ACCESS OBJECTS 247

The above con�guration speci�es a setup with a single master and multiple
slaves. One of the slaves will be connected and used to perform read queries,
while the master will be used to perform write queries. Such read-write
splitting is accomplished automatically with this con�guration. For example,

// create a Connection instance using the above configuration

Yii::$app->db = Yii::createObject($config);

// query against one of the slaves

$rows = Yii::$app->db->createCommand('SELECT * FROM user LIMIT 10')->

queryAll();

// query against the master

Yii::$app->db->createCommand("UPDATE user SET username='demo' WHERE id=1")->

execute();

Info: Queries performed by calling yii\db\Command::execute()
are considered as write queries, while all other queries done through
one of the �query� methods of yii\db\Command are read queries.
You can get the currently active slave connection via Yii::$app-

>db->slave.

The Connection component supports load balancing and failover between
slaves. When performing a read query for the �rst time, the Connection

component will randomly pick a slave and try connecting to it. If the
slave is found �dead�, it will try another one. If none of the slaves is avail-
able, it will connect to the master. By con�guring a yii\db\Connection::

serverStatusCache, a �dead� server can be remembered so that it will not
be tried again during a yii\db\Connection::serverRetryInterval.

Info: In the above con�guration, a connection timeout of 10
seconds is speci�ed for every slave. This means if a slave cannot
be reached in 10 seconds, it is considered as �dead�. You can
adjust this parameter based on your actual environment.

You can also con�gure multiple masters with multiple slaves. For example,

[

'class' => 'yii\db\Connection',

// common configuration for masters

'masterConfig' => [

'username' => 'master',

'password' => '',

'attributes' => [

// use a smaller connection timeout

PDO::ATTR_TIMEOUT => 10,

],

],

248 CHAPTER 6. WORKING WITH DATABASES

// list of master configurations

'masters' => [

['dsn' => 'dsn for master server 1'],

['dsn' => 'dsn for master server 2'],

],

// common configuration for slaves

'slaveConfig' => [

'username' => 'slave',

'password' => '',

'attributes' => [

// use a smaller connection timeout

PDO::ATTR_TIMEOUT => 10,

],

],

// list of slave configurations

'slaves' => [

['dsn' => 'dsn for slave server 1'],

['dsn' => 'dsn for slave server 2'],

['dsn' => 'dsn for slave server 3'],

['dsn' => 'dsn for slave server 4'],

],

]

The above con�guration speci�es two masters and four slaves. The Connection
component also supports load balancing and failover between masters just
as it does between slaves. A di�erence is that when none of the masters are
available an exception will be thrown.

Note: When you use the yii\db\Connection::masters prop-
erty to con�gure one or multiple masters, all other properties for
specifying a database connection (e.g. dsn, username, password)
with the Connection object itself will be ignored.

By default, transactions use the master connection. And within a transac-
tion, all DB operations will use the master connection. For example,

$db = Yii::$app->db;

// the transaction is started on the master connection

$transaction = $db->beginTransaction();

try {

// both queries are performed against the master

$rows = $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();

$db->createCommand("UPDATE user SET username='demo' WHERE id=1")->

execute();

$transaction->commit();

} catch(\Exception $e) {

$transaction->rollBack();

throw $e;

} catch(\Throwable $e) {

6.1. DATABASE ACCESS OBJECTS 249

$transaction->rollBack();

throw $e;

}

If you want to start a transaction with the slave connection, you should
explicitly do so, like the following:

$transaction = Yii::$app->db->slave->beginTransaction();

Sometimes, you may want to force using the master connection to perform
a read query. This can be achieved with the useMaster() method:

$rows = Yii::$app->db->useMaster(function ($db) {

return $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();

});

You may also directly set Yii::$app->db->enableSlaves to be false to direct
all queries to the master connection.

6.1.6 Working with Database Schema

Yii DAO provides a whole set of methods to let you manipulate the database
schema, such as creating new tables, dropping a column from a table, etc.
These methods are listed as follows:

• yii\db\Command::createTable(): creating a table
• yii\db\Command::renameTable(): renaming a table
• yii\db\Command::dropTable(): removing a table
• yii\db\Command::truncateTable(): removing all rows in a table
• yii\db\Command::addColumn(): adding a column
• yii\db\Command::renameColumn(): renaming a column
• yii\db\Command::dropColumn(): removing a column
• yii\db\Command::alterColumn(): altering a column
• yii\db\Command::addPrimaryKey(): adding a primary key
• yii\db\Command::dropPrimaryKey(): removing a primary key
• yii\db\Command::addForeignKey(): adding a foreign key
• yii\db\Command::dropForeignKey(): removing a foreign key
• yii\db\Command::createIndex(): creating an index
• yii\db\Command::dropIndex(): removing an index

These methods can be used like the following:

// CREATE TABLE

Yii::$app->db->createCommand()->createTable('post', [

'id' => 'pk',

'title' => 'string',

'text' => 'text',

]);

The above array describes the name and types of the columns to be created.
For the column types, Yii provides a set of abstract data types, that allow you
to de�ne a database agnostic schema. These are converted to DBMS speci�c

250 CHAPTER 6. WORKING WITH DATABASES

type de�nitions dependent on the database, the table is created in. Please
refer to the API documentation of the yii\db\Command::createTable()-
method for more information.

Besides changing the database schema, you can also retrieve the de�nition
information about a table through the yii\db\Connection::getTableSchema()
method of a DB connection. For example,

$table = Yii::$app->db->getTableSchema('post');

The method returns a yii\db\TableSchema object which contains the in-
formation about the table's columns, primary keys, foreign keys, etc. All
these information are mainly utilized by query builder and active record to
help you write database-agnostic code.

6.2 Query Builder

Built on top of Database Access Objects, query builder allows you to con-
struct a SQL query in a programmatic and DBMS-agnostic way. Compared
to writing raw SQL statements, using query builder will help you write more
readable SQL-related code and generate more secure SQL statements.

Using query builder usually involves two steps:

1. Build a yii\db\Query object to represent di�erent parts (e.g. SELECT,
FROM) of a SELECT SQL statement.

2. Execute a query method (e.g. all()) of yii\db\Query to retrieve data
from the database.

The following code shows a typical way of using query builder:

$rows = (new \yii\db\Query())

->select(['id', 'email'])

->from('user')

->where(['last_name' => 'Smith'])

->limit(10)

->all();

The above code generates and executes the following SQL query, where the
:last_name parameter is bound with the string 'Smith'.

SELECT `id`, `email`

FROM `user`

WHERE `last_name` = :last_name

LIMIT 10

Info: You usually mainly work with yii\db\Query instead of
yii\db\QueryBuilder. The latter is invoked by the former im-
plicitly when you call one of the query methods. yii\db\QueryBuilder
is the class responsible for generating DBMS-dependent SQL
statements (e.g. quoting table/column names di�erently) from
DBMS-independent yii\db\Query objects.

6.2. QUERY BUILDER 251

6.2.1 Building Queries

To build a yii\db\Query object, you call di�erent query building methods to
specify di�erent parts of a SQL query. The names of these methods resemble
the SQL keywords used in the corresponding parts of the SQL statement.
For example, to specify the FROM part of a SQL query, you would call the
yii\db\Query::from() method. All the query building methods return the
query object itself, which allows you to chain multiple calls together.

In the following, we will describe the usage of each query building method.

yii\db\Query::select()

The yii\db\Query::select() method speci�es the SELECT fragment of a
SQL statement. You can specify columns to be selected in either an array
or a string, like the following. The column names being selected will be
automatically quoted when the SQL statement is being generated from a
query object.

$query->select(['id', 'email']);

// equivalent to:

$query->select('id, email');

The column names being selected may include table pre�xes and/or column
aliases, like you do when writing raw SQL queries. For example,

$query->select(['user.id AS user_id', 'email']);

// equivalent to:

$query->select('user.id AS user_id, email');

If you are using the array format to specify columns, you can also use the
array keys to specify the column aliases. For example, the above code can
be rewritten as follows,

$query->select(['user_id' => 'user.id', 'email']);

If you do not call the yii\db\Query::select() method when building a
query, * will be selected, which means selecting all columns.

Besides column names, you can also select DB expressions. You must
use the array format when selecting a DB expression that contains commas
to avoid incorrect automatic name quoting. For example,

$query->select(["CONCAT(first_name, ' ', last_name) AS full_name", 'email'])

;

As with all places where raw SQL is involved, you may use the DBMS ag-
nostic quoting syntax for table and column names when writing DB expres-
sions in select.

252 CHAPTER 6. WORKING WITH DATABASES

Starting from version 2.0.1, you may also select sub-queries. You should
specify each sub-query in terms of a yii\db\Query object. For example,

$subQuery = (new Query())->select('COUNT(*)')->from('user');

// SELECT `id`, (SELECT COUNT(*) FROM `user`) AS `count` FROM `post`

$query = (new Query())->select(['id', 'count' => $subQuery])->from('post');

To select distinct rows, you may call yii\db\Query::distinct(), like the
following:

// SELECT DISTINCT `user_id` ...

$query->select('user_id')->distinct();

You can call yii\db\Query::addSelect() to select additional columns. For
example,

$query->select(['id', 'username'])

->addSelect(['email']);

yii\db\Query::from()

The yii\db\Query::from() method speci�es the FROM fragment of a SQL
statement. For example,

// SELECT * FROM `user`

$query->from('user');

You can specify the table(s) being selected from in either a string or an array.
The table names may contain schema pre�xes and/or table aliases, like you
do when writing raw SQL statements. For example,

$query->from(['public.user u', 'public.post p']);

// equivalent to:

$query->from('public.user u, public.post p');

If you are using the array format, you can also use the array keys to specify
the table aliases, like the following:

$query->from(['u' => 'public.user', 'p' => 'public.post']);

Besides table names, you can also select from sub-queries by specifying them
in terms of yii\db\Query objects. For example,

$subQuery = (new Query())->select('id')->from('user')->where('status=1');

// SELECT * FROM (SELECT `id` FROM `user` WHERE status=1) u

$query->from(['u' => $subQuery]);

Pre�xes Also a default yii\db\Connection::$tablePrefix can be ap-
plied. Implementation instructions are in the �Quoting Tables� section of
the �Database Access Objects� guide.

6.2. QUERY BUILDER 253

yii\db\Query::where()

The yii\db\Query::where() method speci�es the WHERE fragment of a SQL
query. You can use one of the three formats to specify a WHERE condition:

• string format, e.g., 'status=1'
• hash format, e.g. ['status' => 1, 'type' => 2]

• operator format, e.g. ['like', 'name', 'test']

String Format String format is best used to specify very simple condi-
tions or if you need to use built-in functions of the DBMS. It works as if you
are writing a raw SQL. For example,

$query->where('status=1');

// or use parameter binding to bind dynamic parameter values

$query->where('status=:status', [':status' => $status]);

// raw SQL using MySQL YEAR() function on a date field

$query->where('YEAR(somedate) = 2015');

Do NOT embed variables directly in the condition like the following, espe-
cially if the variable values come from end user inputs, because this will make
your application subject to SQL injection attacks.

// Dangerous! Do NOT do this unless you are very certain $status must be an

integer.

$query->where("status=$status");

When using parameter binding, you may call yii\db\Query::params() or
yii\db\Query::addParams() to specify parameters separately.

$query->where('status=:status')

->addParams([':status' => $status]);

As with all places where raw SQL is involved, you may use the DBMS ag-
nostic quoting syntax for table and column names when writing conditions
in string format.

Hash Format Hash format is best used to specify multiple AND-concatenated
sub-conditions each being a simple equality assertion. It is written as an ar-
ray whose keys are column names and values the corresponding values that
the columns should be. For example,

// ...WHERE (`status` = 10) AND (`type` IS NULL) AND (`id` IN (4, 8, 15))

$query->where([

'status' => 10,

'type' => null,

'id' => [4, 8, 15],

]);

As you can see, the query builder is intelligent enough to properly handle
values that are nulls or arrays.

You can also use sub-queries with hash format like the following:

254 CHAPTER 6. WORKING WITH DATABASES

$userQuery = (new Query())->select('id')->from('user');

// ...WHERE `id` IN (SELECT `id` FROM `user`)

$query->where(['id' => $userQuery]);

Using the Hash Format, Yii internally uses parameter binding so in contrast
to the string format, here you do not have to add parameters manually.

Operator Format Operator format allows you to specify arbitrary con-
ditions in a programmatic way. It takes the following format:

[operator, operand1, operand2, ...]

where the operands can each be speci�ed in string format, hash format or
operator format recursively, while the operator can be one of the following:

• and: the operands should be concatenated together using AND. For
example, ['and', 'id=1', 'id=2'] will generate id=1 AND id=2. If an op-
erand is an array, it will be converted into a string using the rules
described here. For example, ['and', 'type=1', ['or', 'id=1', 'id=2'

]] will generate type=1 AND (id=1 OR id=2). The method will NOT do
any quoting or escaping.

• or: similar to the and operator except that the operands are concaten-
ated using OR.

• between: operand 1 should be the column name, and operand 2 and 3
should be the starting and ending values of the range that the column
is in. For example, ['between', 'id', 1, 10] will generate id BETWEEN 1

AND 10.
• not between: similar to between except the BETWEEN is replaced with NOT

BETWEEN in the generated condition.
• in: operand 1 should be a column or DB expression. Operand 2 can
be either an array or a Query object. It will generate an IN condition.
If Operand 2 is an array, it will represent the range of the values that
the column or DB expression should be; If Operand 2 is a Query object,
a sub-query will be generated and used as the range of the column
or DB expression. For example, ['in', 'id', [1, 2, 3]] will generate
id IN (1, 2, 3). The method will properly quote the column name and
escape values in the range. The in operator also supports composite
columns. In this case, operand 1 should be an array of the columns,
while operand 2 should be an array of arrays or a Query object repres-
enting the range of the columns.

• not in: similar to the in operator except that IN is replaced with NOT IN

in the generated condition.
• like: operand 1 should be a column or DB expression, and operand 2
be a string or an array representing the values that the column or DB
expression should be like. For example, ['like', 'name', 'tester'] will
generate name LIKE '%tester%'. When the value range is given as an ar-

6.2. QUERY BUILDER 255

ray, multiple LIKE predicates will be generated and concatenated using
AND. For example, ['like', 'name', ['test', 'sample']] will generate
name LIKE '%test%' AND name LIKE '%sample%'. You may also provide an
optional third operand to specify how to escape special characters in
the values. The operand should be an array of mappings from the
special characters to their escaped counterparts. If this operand is not
provided, a default escape mapping will be used. You may use false

or an empty array to indicate the values are already escaped and no
escape should be applied. Note that when using an escape mapping
(or the third operand is not provided), the values will be automatically
enclosed within a pair of percentage characters.

Note: When using PostgreSQL you may also use ilike15

instead of like for case-insensitive matching.

• or like: similar to the like operator except that OR is used to concat-
enate the LIKE predicates when operand 2 is an array.

• not like: similar to the like operator except that LIKE is replaced with
NOT LIKE in the generated condition.

• or not like: similar to the not like operator except that OR is used to
concatenate the NOT LIKE predicates.

• exists: requires one operand which must be an instance of yii\db

\Query representing the sub-query. It will build an EXISTS (sub-query)

expression.
• not exists: similar to the exists operator and builds a NOT EXISTS (sub

-query) expression.
• >, <=, or any other valid DB operator that takes two operands: the �rst
operand must be a column name while the second operand a value.
For example, ['>', 'age', 10] will generate age>10.

Using the Operator Format, Yii internally uses parameter binding so in con-
trast to the string format, here you do not have to add parameters manually.

Appending Conditions You can use yii\db\Query::andWhere() or
yii\db\Query::orWhere() to append additional conditions to an existing
one. You can call them multiple times to append multiple conditions separ-
ately. For example,

$status = 10;

$search = 'yii';

$query->where(['status' => $status]);

if (!empty($search)) {

$query->andWhere(['like', 'title', $search]);

}

15http://www.postgresql.org/docs/8.3/static/functions-matching.html#

FUNCTIONS-LIKE

http://www.postgresql.org/docs/8.3/static/functions-matching.html#FUNCTIONS-LIKE
http://www.postgresql.org/docs/8.3/static/functions-matching.html#FUNCTIONS-LIKE

256 CHAPTER 6. WORKING WITH DATABASES

If $search is not empty, the following WHERE condition will be generated:

WHERE (`status` = 10) AND (`title` LIKE '%yii%')

Filter Conditions When building WHERE conditions based on input from
end users, you usually want to ignore those input values, that are empty. For
example, in a search form that allows you to search by username and email,
you would like to ignore the username/email condition if the user does not
enter anything in the username/email input �eld. You can achieve this goal
by using the yii\db\Query::filterWhere() method:

// $username and $email are from user inputs

$query->filterWhere([

'username' => $username,

'email' => $email,

]);

The only di�erence between yii\db\Query::filterWhere() and yii\db

\Query::where() is that the former will ignore empty values provided in
the condition in hash format. So if $email is empty while $username is not,
the above code will result in the SQL condition WHERE username=:username.

Info: A value is considered empty if it is null, an empty array,
an empty string or a string consisting of whitespaces only.

Like yii\db\Query::andWhere() and yii\db\Query::orWhere(), you can
use yii\db\Query::andFilterWhere() and yii\db\Query::orFilterWhere()
to append additional �lter conditions to the existing one.

Additionally, there is yii\db\Query::andFilterCompare() that can in-
telligently determine operator based on what's in the value:

$query->andFilterCompare('name', 'John Doe');

$query->andFilterCompare('rating', '>9');

$query->andFilterCompare('value', '<=100');

You can also specify operator explicitly:

$query->andFilterCompare('name', 'Doe', 'like');

Since Yii 2.0.11 there are similar methods for HAVING condition:

• yii\db\Query::filterHaving()

• yii\db\Query::andFilterHaving()

• yii\db\Query::orFilterHaving()

yii\db\Query::orderBy()

The yii\db\Query::orderBy() method speci�es the ORDER BY fragment of a
SQL query. For example,

6.2. QUERY BUILDER 257

// ... ORDER BY `id` ASC, `name` DESC

$query->orderBy([

'id' => SORT_ASC,

'name' => SORT_DESC,

]);

In the above code, the array keys are column names while the array values are
the corresponding order by directions. The PHP constant SORT_ASC speci�es
ascending sort and SORT_DESC descending sort.

If ORDER BY only involves simple column names, you can specify it using a
string, just like you do when writing raw SQL statements. For example,

$query->orderBy('id ASC, name DESC');

Note: You should use the array format if ORDER BY involves some
DB expression.

You can call yii\db\Query::addOrderBy() to add additional columns to
the ORDER BY fragment. For example,

$query->orderBy('id ASC')

->addOrderBy('name DESC');

yii\db\Query::groupBy()

The yii\db\Query::groupBy() method speci�es the GROUP BY fragment of a
SQL query. For example,

// ... GROUP BY `id`, `status`

$query->groupBy(['id', 'status']);

If GROUP BY only involves simple column names, you can specify it using a
string, just like you do when writing raw SQL statements. For example,

$query->groupBy('id, status');

Note: You should use the array format if GROUP BY involves some
DB expression.

You can call yii\db\Query::addGroupBy() to add additional columns to
the GROUP BY fragment. For example,

$query->groupBy(['id', 'status'])

->addGroupBy('age');

258 CHAPTER 6. WORKING WITH DATABASES

yii\db\Query::having()

The yii\db\Query::having() method speci�es the HAVING fragment of a
SQL query. It takes a condition which can be speci�ed in the same way as
that for where(). For example,

// ... HAVING `status` = 1

$query->having(['status' => 1]);

Please refer to the documentation for where() for more details about how to
specify a condition.

You can call yii\db\Query::andHaving() or yii\db\Query::orHaving()
to append additional conditions to the HAVING fragment. For example,

// ... HAVING (`status` = 1) AND (`age` > 30)

$query->having(['status' => 1])

->andHaving(['>', 'age', 30]);

yii\db\Query::limit() and yii\db\Query::offset()

The yii\db\Query::limit() and yii\db\Query::offset() methods spe-
cify the LIMIT and OFFSET fragments of a SQL query. For example,

// ... LIMIT 10 OFFSET 20

$query->limit(10)->offset(20);

If you specify an invalid limit or o�set (e.g. a negative value), it will be
ignored.

Info: For DBMS that do not support LIMIT and OFFSET (e.g.
MSSQL), query builder will generate a SQL statement that emu-
lates the LIMIT/OFFSET behavior.

yii\db\Query::join()

The yii\db\Query::join() method speci�es the JOIN fragment of a SQL
query. For example,

// ... LEFT JOIN `post` ON `post`.`user_id` = `user`.`id`

$query->join('LEFT JOIN', 'post', 'post.user_id = user.id');

The yii\db\Query::join() method takes four parameters:
• $type: join type, e.g., 'INNER JOIN', 'LEFT JOIN'.
• $table: the name of the table to be joined.
• $on: optional, the join condition, i.e., the ON fragment. Please refer to
where() for details about specifying a condition. Note, that the array
syntax does not work for specifying a column based condition, e.g. ['

user.id' => 'comment.userId'] will result in a condition where the user
id must be equal to the string 'comment.userId'. You should use the
string syntax instead and specify the condition as 'user.id = comment.

userId'.

6.2. QUERY BUILDER 259

• $params: optional, the parameters to be bound to the join condition.

You can use the following shortcut methods to specify INNER JOIN, LEFT JOIN

and RIGHT JOIN, respectively.

• yii\db\Query::innerJoin()

• yii\db\Query::leftJoin()

• yii\db\Query::rightJoin()

For example,

$query->leftJoin('post', 'post.user_id = user.id');

To join with multiple tables, call the above join methods multiple times,
once for each table.

Besides joining with tables, you can also join with sub-queries. To do so,
specify the sub-queries to be joined as yii\db\Query objects. For example,

$subQuery = (new \yii\db\Query())->from('post');

$query->leftJoin(['u' => $subQuery], 'u.id = author_id');

In this case, you should put the sub-query in an array and use the array key
to specify the alias.

yii\db\Query::union()

The yii\db\Query::union() method speci�es the UNION fragment of a SQL
query. For example,

$query1 = (new \yii\db\Query())

->select("id, category_id AS type, name")

->from('post')

->limit(10);

$query2 = (new \yii\db\Query())

->select('id, type, name')

->from('user')

->limit(10);

$query1->union($query2);

You can call yii\db\Query::union() multiple times to append more UNION

fragments.

6.2.2 Query Methods

yii\db\Query provides a whole set of methods for di�erent query purposes:

• yii\db\Query::all(): returns an array of rows with each row being
an associative array of name-value pairs.

• yii\db\Query::one(): returns the �rst row of the result.
• yii\db\Query::column(): returns the �rst column of the result.
• yii\db\Query::scalar(): returns a scalar value located at the �rst
row and �rst column of the result.

260 CHAPTER 6. WORKING WITH DATABASES

• yii\db\Query::exists(): returns a value indicating whether the query
contains any result.

• yii\db\Query::count(): returns the result of a COUNT query.
• Other aggregation query methods, including yii\db\Query::sum(),
yii\db\Query::average(), yii\db\Query::max(), yii\db\Query::
min(). The $q parameter is mandatory for these methods and can be
either a column name or a DB expression.

For example,

// SELECT `id`, `email` FROM `user`

$rows = (new \yii\db\Query())

->select(['id', 'email'])

->from('user')

->all();

// SELECT * FROM `user` WHERE `username` LIKE `%test%`

$row = (new \yii\db\Query())

->from('user')

->where(['like', 'username', 'test'])

->one();

Note: The yii\db\Query::one() method only returns the �rst
row of the query result. It does NOT add LIMIT 1 to the generated
SQL statement. This is �ne and preferred if you know the query
will return only one or a few rows of data (e.g. if you are querying
with some primary keys). However, if the query may potentially
result in many rows of data, you should call limit(1) explicitly to
improve the performance, e.g., (new \yii\db\Query())->from('user

')->limit(1)->one().

All these query methods take an optional $db parameter representing the yii
\db\Connection that should be used to perform a DB query. If you omit this
parameter, the db application component will be used as the DB connection.
Below is another example using the yii\db\Query::count() query method:

// executes SQL: SELECT COUNT(*) FROM `user` WHERE `last_name`=:last_name

$count = (new \yii\db\Query())

->from('user')

->where(['last_name' => 'Smith'])

->count();

When you call a query method of yii\db\Query, it actually does the follow-
ing work internally:

• Call yii\db\QueryBuilder to generate a SQL statement based on the
current construct of yii\db\Query;

• Create a yii\db\Command object with the generated SQL statement;
• Call a query method (e.g. yii\db\Command::queryAll()) of yii\db
\Command to execute the SQL statement and retrieve the data.

6.2. QUERY BUILDER 261

Sometimes, you may want to examine or use the SQL statement built from
a yii\db\Query object. You can achieve this goal with the following code:

$command = (new \yii\db\Query())

->select(['id', 'email'])

->from('user')

->where(['last_name' => 'Smith'])

->limit(10)

->createCommand();

// show the SQL statement

echo $command->sql;

// show the parameters to be bound

print_r($command->params);

// returns all rows of the query result

$rows = $command->queryAll();

Indexing Query Results

When you call yii\db\Query::all(), it will return an array of rows which
are indexed by consecutive integers. Sometimes you may want to index them
di�erently, such as indexing by a particular column or expression values.
You can achieve this goal by calling yii\db\Query::indexBy() before yii

\db\Query::all(). For example,

// returns [100 => ['id' => 100, 'username' => '...', ...], 101 => [...],

103 => [...], ...]

$query = (new \yii\db\Query())

->from('user')

->limit(10)

->indexBy('id')

->all();

To index by expression values, pass an anonymous function to the yii\db

\Query::indexBy() method:

$query = (new \yii\db\Query())

->from('user')

->indexBy(function ($row) {

return $row['id'] . $row['username'];

})->all();

The anonymous function takes a parameter $row which contains the current
row data and should return a scalar value which will be used as the index
value for the current row.

Note: In contrast to query methods like yii\db\Query::groupBy()
or yii\db\Query::orderBy() which are converted to SQL and
are part of the query, this method works after the data has been
fetched from the database. That means that only those column
names can be used that have been part of SELECT in your query.

262 CHAPTER 6. WORKING WITH DATABASES

Also if you selected a column with table pre�x, e.g. customer.id,
the result set will only contain id so you have to call ->indexBy('
id') without table pre�x.

Batch Query

When working with large amounts of data, methods such as yii\db\Query::
all() are not suitable because they require loading all data into the memory.
To keep the memory requirement low, Yii provides the so-called batch query
support. A batch query makes use of the data cursor and fetches data in
batches.

Batch query can be used like the following:

use yii\db\Query;

$query = (new Query())

->from('user')

->orderBy('id');

foreach ($query->batch() as $users) {

// $users is an array of 100 or fewer rows from the user table

}

// or if you want to iterate the row one by one

foreach ($query->each() as $user) {

// $user represents one row of data from the user table

}

The method yii\db\Query::batch() and yii\db\Query::each() return an
yii\db\BatchQueryResult object which implements the Iterator interface
and thus can be used in the foreach construct. During the �rst iteration, a
SQL query is made to the database. Data are then fetched in batches in the
remaining iterations. By default, the batch size is 100, meaning 100 rows
of data are being fetched in each batch. You can change the batch size by
passing the �rst parameter to the batch() or each() method.

Compared to the yii\db\Query::all(), the batch query only loads 100
rows of data at a time into the memory. If you process the data and then
discard it right away, the batch query can help reduce memory usage.

If you specify the query result to be indexed by some column via yii\db

\Query::indexBy(), the batch query will still keep the proper index. For
example,

$query = (new \yii\db\Query())

->from('user')

->indexBy('username');

foreach ($query->batch() as $users) {

// $users is indexed by the "username" column

}

6.3. ACTIVE RECORD 263

foreach ($query->each() as $username => $user) {

// ...

}

6.3 Active Record

Active Record16 provides an object-oriented interface for accessing and ma-
nipulating data stored in databases. An Active Record class is associated
with a database table, an Active Record instance corresponds to a row of
that table, and an attribute of an Active Record instance represents the value
of a particular column in that row. Instead of writing raw SQL statements,
you would access Active Record attributes and call Active Record methods
to access and manipulate the data stored in database tables.

For example, assume Customer is an Active Record class which is associ-
ated with the customer table and name is a column of the customer table. You
can write the following code to insert a new row into the customer table:

$customer = new Customer();

$customer->name = 'Qiang';

$customer->save();

The above code is equivalent to using the following raw SQL statement
for MySQL, which is less intuitive, more error prone, and may even have
compatibility problems if you are using a di�erent kind of database:

$db->createCommand('INSERT INTO `customer` (`name`) VALUES (:name)', [

':name' => 'Qiang',

])->execute();

Yii provides the Active Record support for the following relational databases:

• MySQL 4.1 or later: via yii\db\ActiveRecord

• PostgreSQL 7.3 or later: via yii\db\ActiveRecord

• SQLite 2 and 3: via yii\db\ActiveRecord

• Microsoft SQL Server 2008 or later: via yii\db\ActiveRecord

• Oracle: via yii\db\ActiveRecord

• CUBRID 9.3 or later: via yii\db\ActiveRecord (Note that due to a
bug17 in the cubrid PDO extension, quoting of values will not work,
so you need CUBRID 9.3 as the client as well as the server)

• Sphinx: via yii\sphinx\ActiveRecord, requires the yii2-sphinx ex-
tension

• ElasticSearch: via yii\elasticsearch\ActiveRecord, requires the
yii2-elasticsearch extension

Additionally, Yii also supports using Active Record with the following NoSQL
databases:

16http://en.wikipedia.org/wiki/Active_record_pattern
17http://jira.cubrid.org/browse/APIS-658

http://en.wikipedia.org/wiki/Active_record_pattern
http://jira.cubrid.org/browse/APIS-658

264 CHAPTER 6. WORKING WITH DATABASES

• Redis 2.6.12 or later: via yii\redis\ActiveRecord, requires the yii2

-redis extension
• MongoDB 1.3.0 or later: via yii\mongodb\ActiveRecord, requires the

yii2-mongodb extension

In this tutorial, we will mainly describe the usage of Active Record for rela-
tional databases. However, most content described here are also applicable
to Active Record for NoSQL databases.

6.3.1 Declaring Active Record Classes

To get started, declare an Active Record class by extending yii\db\ActiveRecord.

Setting a table name

By default each Active Record class is associated with its database table.
The yii\db\ActiveRecord::tableName() method returns the table name
by converting the class name via yii\helpers\Inflector::camel2id().
You may override this method if the table is not named after this convention.

Also a default yii\db\Connection::$tablePrefix can be applied. For
example if yii\db\Connection::$tablePrefix is tbl_, Customer becomes
tbl_customer and OrderItem becomes tbl_order_item.

If a table name is given as {{%TableName}}, then the percentage character
% will be replaced with the table pre�x. For example, {{%post}} becomes
{{tbl_post}}. The brackets around the table name are used for quoting in an
SQL query.

In the following example, we declare an Active Record class named
Customer for the customer database table.

namespace app\models;

use yii\db\ActiveRecord;

class Customer extends ActiveRecord

{

const STATUS_INACTIVE = 0;

const STATUS_ACTIVE = 1;

/**

* @return string the name of the table associated with this

ActiveRecord class.

*/

public static function tableName()

{

return '{{customer}}';

}

}

6.3. ACTIVE RECORD 265

Active records are called �models�

Active Record instances are considered as models. For this reason, we usu-
ally put Active Record classes under the app\models namespace (or other
namespaces for keeping model classes).

Because yii\db\ActiveRecord extends from yii\base\Model, it inher-
its all model features, such as attributes, validation rules, data serialization,
etc.

6.3.2 Connecting to Databases

By default, Active Record uses the db application component as the yii

\db\Connection to access and manipulate the database data. As explained
in Database Access Objects, you can con�gure the db component in the
application con�guration like shown below,

return [

'components' => [

'db' => [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=localhost;dbname=testdb',

'username' => 'demo',

'password' => 'demo',

],

],

];

If you want to use a di�erent database connection other than the db com-
ponent, you should override the yii\db\ActiveRecord::getDb() method:

class Customer extends ActiveRecord

{

// ...

public static function getDb()

{

// use the "db2" application component

return \Yii::$app->db2;

}

}

6.3.3 Querying Data

After declaring an Active Record class, you can use it to query data from
the corresponding database table. The process usually takes the following
three steps:

1. Create a new query object by calling the yii\db\ActiveRecord::

find() method;

2. Build the query object by calling query building methods;

266 CHAPTER 6. WORKING WITH DATABASES

3. Call a query method to retrieve data in terms of Active Record in-
stances.

As you can see, this is very similar to the procedure with query builder.
The only di�erence is that instead of using the new operator to create a
query object, you call yii\db\ActiveRecord::find() to return a new query
object which is of class yii\db\ActiveQuery.

Below are some examples showing how to use Active Query to query
data:

// return a single customer whose ID is 123

// SELECT * FROM `customer` WHERE `id` = 123

$customer = Customer::find()

->where(['id' => 123])

->one();

// return all active customers and order them by their IDs

// SELECT * FROM `customer` WHERE `status` = 1 ORDER BY `id`

$customers = Customer::find()

->where(['status' => Customer::STATUS_ACTIVE])

->orderBy('id')

->all();

// return the number of active customers

// SELECT COUNT(*) FROM `customer` WHERE `status` = 1

$count = Customer::find()

->where(['status' => Customer::STATUS_ACTIVE])

->count();

// return all customers in an array indexed by customer IDs

// SELECT * FROM `customer`

$customers = Customer::find()

->indexBy('id')

->all();

In the above, $customer is a Customer object while $customers is an array of
Customer objects. They are all populated with the data retrieved from the
customer table.

Info: Because yii\db\ActiveQuery extends from yii\db\Query,
you can use all query building methods and query methods as
described in the Section Query Builder.

Because it is a common task to query by primary key values or a set of
column values, Yii provides two shortcut methods for this purpose:

• yii\db\ActiveRecord::findOne(): returns a single Active Record
instance populated with the �rst row of the query result.

• yii\db\ActiveRecord::findAll(): returns an array of Active Record
instances populated with all query result.

Both methods can take one of the following parameter formats:

6.3. ACTIVE RECORD 267

• a scalar value: the value is treated as the desired primary key value to
be looked for. Yii will determine automatically which column is the
primary key column by reading database schema information.

• an array of scalar values: the array is treated as the desired primary
key values to be looked for.

• an associative array: the keys are column names and the values are
the corresponding desired column values to be looked for. Please refer
to Hash Format for more details.

The following code shows how these methods can be used:

// returns a single customer whose ID is 123

// SELECT * FROM `customer` WHERE `id` = 123

$customer = Customer::findOne(123);

// returns customers whose ID is 100, 101, 123 or 124

// SELECT * FROM `customer` WHERE `id` IN (100, 101, 123, 124)

$customers = Customer::findAll([100, 101, 123, 124]);

// returns an active customer whose ID is 123

// SELECT * FROM `customer` WHERE `id` = 123 AND `status` = 1

$customer = Customer::findOne([

'id' => 123,

'status' => Customer::STATUS_ACTIVE,

]);

// returns all inactive customers

// SELECT * FROM `customer` WHERE `status` = 0

$customers = Customer::findAll([

'status' => Customer::STATUS_INACTIVE,

]);

Note: Neither yii\db\ActiveRecord::findOne() nor yii\db

\ActiveQuery::one() will add LIMIT 1 to the generated SQL
statement. If your query may return many rows of data, you
should call limit(1) explicitly to improve the performance, e.g.,
Customer::find()->limit(1)->one().

Besides using query building methods, you can also write raw SQLs to query
data and populate the results into Active Record objects. You can do so by
calling the yii\db\ActiveRecord::findBySql() method:

// returns all inactive customers

$sql = 'SELECT * FROM customer WHERE status=:status';

$customers = Customer::findBySql($sql, [':status' => Customer::

STATUS_INACTIVE])->all();

Do not call extra query building methods after calling yii\db\ActiveRecord
::findBySql() as they will be ignored.

268 CHAPTER 6. WORKING WITH DATABASES

6.3.4 Accessing Data

As aforementioned, the data brought back from the database are populated
into Active Record instances, and each row of the query result corresponds
to a single Active Record instance. You can access the column values by
accessing the attributes of the Active Record instances, for example,

// "id" and "email" are the names of columns in the "customer" table

$customer = Customer::findOne(123);

$id = $customer->id;

$email = $customer->email;

Note: The Active Record attributes are named after the associ-
ated table columns in a case-sensitive manner. Yii automatically
de�nes an attribute in Active Record for every column of the as-
sociated table. You should NOT redeclare any of the attributes.

Because Active Record attributes are named after table columns, you may
�nd you are writing PHP code like $customer->first_name, which uses under-
scores to separate words in attribute names if your table columns are named
in this way. If you are concerned about code style consistency, you should
rename your table columns accordingly (to use camelCase, for example).

Data Transformation

It often happens that the data being entered and/or displayed are in a format
which is di�erent from the one used in storing the data in a database. For
example, in the database you are storing customers' birthdays as UNIX
timestamps (which is not a good design, though), while in most cases you
would like to manipulate birthdays as strings in the format of 'YYYY/MM/DD'

. To achieve this goal, you can de�ne data transformation methods in the
Customer Active Record class like the following:

class Customer extends ActiveRecord

{

// ...

public function getBirthdayText()

{

return date('Y/m/d', $this->birthday);

}

public function setBirthdayText($value)

{

$this->birthday = strtotime($value);

}

}

Now in your PHP code, instead of accessing $customer->birthday, you would
access $customer->birthdayText, which will allow you to input and display
customer birthdays in the format of 'YYYY/MM/DD'.

6.3. ACTIVE RECORD 269

Tip: The above example shows a generic way of transforming
data in di�erent formats. If you are working with date values,
you may use DateValidator and yii\jui\DatePicker, which is
easier to use and more powerful.

Retrieving Data in Arrays

While retrieving data in terms of Active Record objects is convenient and
�exible, it is not always desirable when you have to bring back a large amount
of data due to the big memory footprint. In this case, you can retrieve
data using PHP arrays by calling yii\db\ActiveQuery::asArray() before
executing a query method:

// return all customers

// each customer is returned as an associative array

$customers = Customer::find()

->asArray()

->all();

Note: While this method saves memory and improves perform-
ance, it is closer to the lower DB abstraction layer and you will
lose most of the Active Record features. A very important dis-
tinction lies in the data type of the column values. When you
return data in Active Record instances, column values will be
automatically typecast according to the actual column types; on
the other hand when you return data in arrays, column values
will be strings (since they are the result of PDO without any
processing), regardless their actual column types.

Retrieving Data in Batches

In Query Builder, we have explained that you may use batch query to min-
imize your memory usage when querying a large amount of data from the
database. You may use the same technique in Active Record. For example,

// fetch 10 customers at a time

foreach (Customer::find()->batch(10) as $customers) {

// $customers is an array of 10 or fewer Customer objects

}

// fetch 10 customers at a time and iterate them one by one

foreach (Customer::find()->each(10) as $customer) {

// $customer is a Customer object

}

// batch query with eager loading

foreach (Customer::find()->with('orders')->each() as $customer) {

// $customer is a Customer object with the 'orders' relation populated

}

270 CHAPTER 6. WORKING WITH DATABASES

6.3.5 Saving Data

Using Active Record, you can easily save data to the database by taking the
following steps:

1. Prepare an Active Record instance

2. Assign new values to Active Record attributes

3. Call yii\db\ActiveRecord::save() to save the data into database.

For example,

// insert a new row of data

$customer = new Customer();

$customer->name = 'James';

$customer->email = 'james@example.com';

$customer->save();

// update an existing row of data

$customer = Customer::findOne(123);

$customer->email = 'james@newexample.com';

$customer->save();

The yii\db\ActiveRecord::save() method can either insert or update a
row of data, depending on the state of the Active Record instance. If the
instance is newly created via the new operator, calling yii\db\ActiveRecord
::save() will cause insertion of a new row; If the instance is the result of a
query method, calling yii\db\ActiveRecord::save() will update the row
associated with the instance.

You can di�erentiate the two states of an Active Record instance by
checking its yii\db\ActiveRecord::isNewRecord property value. This prop-
erty is also used by yii\db\ActiveRecord::save() internally as follows:

public function save($runValidation = true, $attributeNames = null)

{

if ($this->getIsNewRecord()) {

return $this->insert($runValidation, $attributeNames);

} else {

return $this->update($runValidation, $attributeNames) !== false;

}

}

Tip: You can call yii\db\ActiveRecord::insert() or yii\db
\ActiveRecord::update() directly to insert or update a row.

Data Validation

Because yii\db\ActiveRecord extends from yii\base\Model, it shares the
same data validation feature. You can declare validation rules by overriding

6.3. ACTIVE RECORD 271

the yii\db\ActiveRecord::rules() method and perform data validation
by calling the yii\db\ActiveRecord::validate() method.

When you call yii\db\ActiveRecord::save(), by default it will call yii
\db\ActiveRecord::validate() automatically. Only when the validation
passes, will it actually save the data; otherwise it will simply return false,
and you can check the yii\db\ActiveRecord::errors property to retrieve
the validation error messages.

Tip: If you are certain that your data do not need validation
(e.g., the data comes from trustable sources), you can call save(
false) to skip the validation.

Massive Assignment

Like normal models, Active Record instances also enjoy the massive assign-
ment feature. Using this feature, you can assign values to multiple attributes
of an Active Record instance in a single PHP statement, like shown below.
Do remember that only safe attributes can be massively assigned, though.

$values = [

'name' => 'James',

'email' => 'james@example.com',

];

$customer = new Customer();

$customer->attributes = $values;

$customer->save();

Updating Counters

It is a common task to increment or decrement a column in a database
table. We call these columns �counter columns�. You can use yii\db

\ActiveRecord::updateCounters() to update one or multiple counter columns.
For example,

$post = Post::findOne(100);

// UPDATE `post` SET `view_count` = `view_count` + 1 WHERE `id` = 100

$post->updateCounters(['view_count' => 1]);

Note: If you use yii\db\ActiveRecord::save() to update a
counter column, you may end up with inaccurate result, because
it is likely the same counter is being saved by multiple requests
which read and write the same counter value.

272 CHAPTER 6. WORKING WITH DATABASES

Dirty Attributes

When you call yii\db\ActiveRecord::save() to save an Active Record
instance, only dirty attributes are being saved. An attribute is considered
dirty if its value has been modi�ed since it was loaded from DB or saved to
DB most recently. Note that data validation will be performed regardless if
the Active Record instance has dirty attributes or not.

Active Record automatically maintains the list of dirty attributes. It
does so by maintaining an older version of the attribute values and com-
paring them with the latest one. You can call yii\db\ActiveRecord::
getDirtyAttributes() to get the attributes that are currently dirty. You
can also call yii\db\ActiveRecord::markAttributeDirty() to explicitly
mark an attribute as dirty.

If you are interested in the attribute values prior to their most recent
modi�cation, you may call yii\db\ActiveRecord::getOldAttributes() or
yii\db\ActiveRecord::getOldAttribute().

Note: The comparison of old and new values will be done using
the === operator so a value will be considered dirty even if it
has the same value but a di�erent type. This is often the case
when the model receives user input from HTML forms where
every value is represented as a string. To ensure the correct
type for e.g. integer values you may apply a validation �lter: ['

attributeName', 'filter', 'filter' => 'intval']. This works with
all the typecasting functions of PHP like intval()18, �oatval()19,
boolval20, etc...

Default Attribute Values

Some of your table columns may have default values de�ned in the database.
Sometimes, you may want to pre-populate your Web form for an Active
Record instance with these default values. To avoid writing the same default
values again, you can call yii\db\ActiveRecord::loadDefaultValues() to
populate the DB-de�ned default values into the corresponding Active Record
attributes:

$customer = new Customer();

$customer->loadDefaultValues();

// $customer->xyz will be assigned the default value declared when defining

the "xyz" column

18http://php.net/manual/en/function.intval.php
19http://php.net/manual/en/function.floatval.php
20http://php.net/manual/en/function.boolval.php

http://php.net/manual/en/function.intval.php
http://php.net/manual/en/function.floatval.php
http://php.net/manual/en/function.boolval.php

6.3. ACTIVE RECORD 273

Attributes Typecasting

Being populated by query results yii\db\ActiveRecord performs automatic
typecast for its attribute values, using information from database table schema.
This allows data retrieved from table column declared as integer to be popu-
lated in ActiveRecord instance with PHP integer, boolean with boolean and
so on. However, typecasting mechanism has several limitations:

• Float values are not be converted and will be represented as strings,
otherwise they may loose precision.

• Conversion of the integer values depends on the integer capacity of the
operation system you use. In particular: values of column declared
as `unsigned integer' or `big integer' will be converted to PHP integer
only at 64-bit operation system, while on 32-bit ones - they will be
represented as strings.

Note that attribute typecast is performed only during populating ActiveRecord
instance from query result. There is no automatic conversion for the val-
ues loaded from HTTP request or set directly via property access. The
table schema will also be used while preparing SQL statements for the Act-
iveRecord data saving, ensuring values are bound to the query with correct
type. However, ActiveRecord instance attribute values will not be converted
during saving process.

Tip: you may use yii\behaviors\AttributeTypecastBehavior
to facilitate attribute values typecasting on ActiveRecord valid-
ation or saving.

Updating Multiple Rows

The methods described above all work on individual Active Record instances,
causing inserting or updating of individual table rows. To update multiple
rows simultaneously, you should call yii\db\ActiveRecord::updateAll(),
instead, which is a static method.

// UPDATE `customer` SET `status` = 1 WHERE `email` LIKE `%@example.com%`

Customer::updateAll(['status' => Customer::STATUS_ACTIVE], ['like', 'email',

'@example.com']);

Similarly, you can call yii\db\ActiveRecord::updateAllCounters() to
update counter columns of multiple rows at the same time.

// UPDATE `customer` SET `age` = `age` + 1

Customer::updateAllCounters(['age' => 1]);

6.3.6 Deleting Data

To delete a single row of data, �rst retrieve the Active Record instance cor-
responding to that row and then call the yii\db\ActiveRecord::delete()
method.

274 CHAPTER 6. WORKING WITH DATABASES

$customer = Customer::findOne(123);

$customer->delete();

You can call yii\db\ActiveRecord::deleteAll() to delete multiple or all
rows of data. For example,

Customer::deleteAll(['status' => Customer::STATUS_INACTIVE]);

Note: Be very careful when calling yii\db\ActiveRecord::

deleteAll() because it may totally erase all data from your
table if you make a mistake in specifying the condition.

6.3.7 Active Record Life Cycles

It is important to understand the life cycles of Active Record when it is used
for di�erent purposes. During each life cycle, a certain sequence of methods
will be invoked, and you can override these methods to get a chance to
customize the life cycle. You can also respond to certain Active Record
events triggered during a life cycle to inject your custom code. These events
are especially useful when you are developing Active Record behaviors which
need to customize Active Record life cycles.

In the following, we will summarize the various Active Record life cycles
and the methods/events that are involved in the life cycles.

New Instance Life Cycle

When creating a new Active Record instance via the new operator, the fol-
lowing life cycle will happen:

1. Class constructor.

2. yii\db\ActiveRecord::init(): triggers an yii\db\ActiveRecord::

EVENT_INIT event.

Querying Data Life Cycle

When querying data through one of the querying methods, each newly pop-
ulated Active Record will undergo the following life cycle:

1. Class constructor.

2. yii\db\ActiveRecord::init(): triggers an yii\db\ActiveRecord::

EVENT_INIT event.

3. yii\db\ActiveRecord::afterFind(): triggers an yii\db\ActiveRecord
::EVENT_AFTER_FIND event.

6.3. ACTIVE RECORD 275

Saving Data Life Cycle

When calling yii\db\ActiveRecord::save() to insert or update an Active
Record instance, the following life cycle will happen:

1. an yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE event. If the method
returns false or yii\base\ModelEvent::isValid is false, the rest of
the steps will be skipped.

2. Performs data validation. If data validation fails, the steps after Step
3 will be skipped.

3. an yii\db\ActiveRecord::EVENT_AFTER_VALIDATE event.

4. an yii\db\ActiveRecord::EVENT_BEFORE_INSERT or yii\db\ActiveRecord
::EVENT_BEFORE_UPDATE event. If the method returns false or yii

\base\ModelEvent::isValid is false, the rest of the steps will be
skipped.

5. Performs the actual data insertion or updating.

6. an yii\db\ActiveRecord::EVENT_AFTER_INSERT or yii\db\ActiveRecord
::EVENT_AFTER_UPDATE event.

Deleting Data Life Cycle

When calling yii\db\ActiveRecord::delete() to delete an Active Record
instance, the following life cycle will happen:

1. an yii\db\ActiveRecord::EVENT_BEFORE_DELETE event. If the method
returns false or yii\base\ModelEvent::isValid is false, the rest of
the steps will be skipped.

2. Performs the actual data deletion.

3. an yii\db\ActiveRecord::EVENT_AFTER_DELETE event.

Note: Calling any of the following methods will NOT initiate
any of the above life cycles because they work on the database
directly and not on a record basis:

• yii\db\ActiveRecord::updateAll()

• yii\db\ActiveRecord::deleteAll()

• yii\db\ActiveRecord::updateCounters()

• yii\db\ActiveRecord::updateAllCounters()

276 CHAPTER 6. WORKING WITH DATABASES

Refreshing Data Life Cycle

When calling yii\db\ActiveRecord::refresh() to refresh an Active Re-
cord instance, the yii\db\ActiveRecord::EVENT_AFTER_REFRESH event is
triggered if refresh is successful and the method returns true.

6.3.8 Working with Transactions

There are two ways of using transactions while working with Active Record.
The �rst way is to explicitly enclose Active Record method calls in a

transactional block, like shown below,

$customer = Customer::findOne(123);

Customer::getDb()->transaction(function($db) use ($customer) {

$customer->id = 200;

$customer->save();

// ...other DB operations...

});

// or alternatively

$transaction = Customer::getDb()->beginTransaction();

try {

$customer->id = 200;

$customer->save();

// ...other DB operations...

$transaction->commit();

} catch(\Exception $e) {

$transaction->rollBack();

throw $e;

} catch(\Throwable $e) {

$transaction->rollBack();

throw $e;

}

Note: in the above code we have two catch-blocks for compat-
ibility with PHP 5.x and PHP 7.x. \Exception implements the
\Throwable interface21 since PHP 7.0, so you can skip the part
with \Exception if your app uses only PHP 7.0 and higher.

The second way is to list the DB operations that require transactional sup-
port in the yii\db\ActiveRecord::transactions() method. For example,

class Customer extends ActiveRecord

{

public function transactions()

{

return [

'admin' => self::OP_INSERT,

21http://php.net/manual/en/class.throwable.php

http://php.net/manual/en/class.throwable.php

6.3. ACTIVE RECORD 277

'api' => self::OP_INSERT | self::OP_UPDATE | self::OP_DELETE,

// the above is equivalent to the following:

// 'api' => self::OP_ALL,

];

}

}

The yii\db\ActiveRecord::transactions() method should return an ar-
ray whose keys are scenario names and values are the corresponding op-
erations that should be enclosed within transactions. You should use the
following constants to refer to di�erent DB operations:

• yii\db\ActiveRecord::OP_INSERT: insertion operation performed by
yii\db\ActiveRecord::insert();

• yii\db\ActiveRecord::OP_UPDATE: update operation performed by
yii\db\ActiveRecord::update();

• yii\db\ActiveRecord::OP_DELETE: deletion operation performed by
yii\db\ActiveRecord::delete().

Use the | operators to concatenate the above constants to indicate multiple
operations. You may also use the shortcut constant yii\db\ActiveRecord
::OP_ALL to refer to all three operations above.

Transactions that are created using this method will be started before
calling yii\db\ActiveRecord::beforeSave() and will be committed after
yii\db\ActiveRecord::afterSave() has run.

6.3.9 Optimistic Locks

Optimistic locking is a way to prevent con�icts that may occur when a single
row of data is being updated by multiple users. For example, both user A
and user B are editing the same wiki article at the same time. After user A
saves his edits, user B clicks on the �Save� button in an attempt to save his
edits as well. Because user B was actually working on an outdated version of
the article, it would be desirable to have a way to prevent him from saving
the article and show him some hint message.

Optimistic locking solves the above problem by using a column to record
the version number of each row. When a row is being saved with an out-
dated version number, a yii\db\StaleObjectException exception will be
thrown, which prevents the row from being saved. Optimistic locking is only
supported when you update or delete an existing row of data using yii\db

\ActiveRecord::update() or yii\db\ActiveRecord::delete(), respect-
ively.

To use optimistic locking,

1. Create a column in the DB table associated with the Active Record
class to store the version number of each row. The column should be
of big integer type (in MySQL it would be BIGINT DEFAULT 0).

278 CHAPTER 6. WORKING WITH DATABASES

2. Override the yii\db\ActiveRecord::optimisticLock() method to
return the name of this column.

3. In the Web form that takes user inputs, add a hidden �eld to store
the current version number of the row being updated. Be sure your
version attribute has input validation rules and validates successfully.

4. In the controller action that updates the row using Active Record, try
and catch the yii\db\StaleObjectException exception. Implement
necessary business logic (e.g. merging the changes, prompting staled
data) to resolve the con�ict.

For example, assume the version column is named as version. You can im-
plement optimistic locking with the code like the following.

// ------ view code -------

use yii\helpers\Html;

// ...other input fields

echo Html::activeHiddenInput($model, 'version');

// ------ controller code -------

use yii\db\StaleObjectException;

public function actionUpdate($id)

{

$model = $this->findModel($id);

try {

if ($model->load(Yii::$app->request->post()) && $model->save()) {

return $this->redirect(['view', 'id' => $model->id]);

} else {

return $this->render('update', [

'model' => $model,

]);

}

} catch (StaleObjectException $e) {

// logic to resolve the conflict

}

}

6.3.10 Working with Relational Data

Besides working with individual database tables, Active Record is also cap-
able of bringing together related data, making them readily accessible through
the primary data. For example, the customer data is related with the order
data because one customer may have placed one or multiple orders. With

6.3. ACTIVE RECORD 279

appropriate declaration of this relation, you'll be able to access a customer's
order information using the expression $customer->orders which gives back
the customer's order information in terms of an array of Order Active Record
instances.

Declaring Relations

To work with relational data using Active Record, you �rst need to declare
relations in Active Record classes. The task is as simple as declaring a
relation method for every interested relation, like the following,

class Customer extends ActiveRecord

{

// ...

public function getOrders()

{

return $this->hasMany(Order::className(), ['customer_id' => 'id']);

}

}

class Order extends ActiveRecord

{

// ...

public function getCustomer()

{

return $this->hasOne(Customer::className(), ['id' => 'customer_id'])

;

}

}

In the above code, we have declared an orders relation for the Customer class,
and a customer relation for the Order class.

Each relation method must be named as getXyz. We call xyz (the �rst
letter is in lower case) the relation name. Note that relation names are case
sensitive.

While declaring a relation, you should specify the following information:

• the multiplicity of the relation: speci�ed by calling either yii\db

\ActiveRecord::hasMany() or yii\db\ActiveRecord::hasOne(). In
the above example you may easily read in the relation declarations that
a customer has many orders while an order only has one customer.

• the name of the related Active Record class: speci�ed as the �rst para-
meter to either yii\db\ActiveRecord::hasMany() or yii\db\ActiveRecord
::hasOne(). A recommended practice is to call Xyz::className() to get
the class name string so that you can receive IDE auto-completion
support as well as error detection at compiling stage.

• the link between the two types of data: speci�es the column(s) through
which the two types of data are related. The array values are the

280 CHAPTER 6. WORKING WITH DATABASES

columns of the primary data (represented by the Active Record class
that you are declaring relations), while the array keys are the columns
of the related data.
An easy rule to remember this is, as you see in the example above, you
write the column that belongs to the related Active Record directly
next to it. You see there that customer_id is a property of Order and id

is a property of Customer.

Accessing Relational Data

After declaring relations, you can access relational data through relation
names. This is just like accessing an object property de�ned by the relation
method. For this reason, we call it relation property. For example,

// SELECT * FROM `customer` WHERE `id` = 123

$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123

// $orders is an array of Order objects

$orders = $customer->orders;

Info: When you declare a relation named xyz via a getter method
getXyz(), you will be able to access xyz like an object property.
Note that the name is case sensitive.

If a relation is declared with yii\db\ActiveRecord::hasMany(), access-
ing this relation property will return an array of the related Active Record
instances; if a relation is declared with yii\db\ActiveRecord::hasOne(),
accessing the relation property will return the related Active Record instance
or null if no related data is found.

When you access a relation property for the �rst time, a SQL statement
will be executed, like shown in the above example. If the same property is
accessed again, the previous result will be returned without re-executing the
SQL statement. To force re-executing the SQL statement, you should unset
the relation property �rst: unset($customer->orders).

Note: While this concept looks similar to the object property
feature, there is an important di�erence. For normal object prop-
erties the property value is of the same type as the de�ning
getter method. A relation method however returns an yii\db

\ActiveQuery instance, while accessing a relation property will
either return a yii\db\ActiveRecord instance or an array of
these.

$customer->orders; // is an array of `Order` objects

$customer->getOrders(); // returns an ActiveQuery instance

This is useful for creating customized queries, which is described
in the next section.

6.3. ACTIVE RECORD 281

Dynamic Relational Query

Because a relation method returns an instance of yii\db\ActiveQuery, you
can further build this query using query building methods before performing
DB query. For example,

$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 200

ORDER BY `id`

$orders = $customer->getOrders()

->where(['>', 'subtotal', 200])

->orderBy('id')

->all();

Unlike accessing a relation property, each time you perform a dynamic rela-
tional query via a relation method, a SQL statement will be executed, even
if the same dynamic relational query was performed before.

Sometimes you may even want to parametrize a relation declaration so
that you can more easily perform dynamic relational query. For example,
you may declare a bigOrders relation as follows,

class Customer extends ActiveRecord

{

public function getBigOrders($threshold = 100)

{

return $this->hasMany(Order::className(), ['customer_id' => 'id'])

->where('subtotal > :threshold', [':threshold' => $threshold])

->orderBy('id');

}

}

Then you will be able to perform the following relational queries:

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 200

ORDER BY `id`

$orders = $customer->getBigOrders(200)->all();

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 100

ORDER BY `id`

$orders = $customer->bigOrders;

Relations via a Junction Table

In database modelling, when the multiplicity between two related tables is
many-to-many, a junction table22 is usually introduced. For example, the
order table and the item table may be related via a junction table named
order_item. One order will then correspond to multiple order items, while
one product item will also correspond to multiple order items.

22https://en.wikipedia.org/wiki/Junction_table

https://en.wikipedia.org/wiki/Junction_table

282 CHAPTER 6. WORKING WITH DATABASES

When declaring such relations, you would call either yii\db\ActiveQuery
::via() or yii\db\ActiveQuery::viaTable() to specify the junction table.
The di�erence between yii\db\ActiveQuery::via() and yii\db\ActiveQuery
::viaTable() is that the former speci�es the junction table in terms of an
existing relation name while the latter directly uses the junction table. For
example,

class Order extends ActiveRecord

{

public function getItems()

{

return $this->hasMany(Item::className(), ['id' => 'item_id'])

->viaTable('order_item', ['order_id' => 'id']);

}

}

or alternatively,

class Order extends ActiveRecord

{

public function getOrderItems()

{

return $this->hasMany(OrderItem::className(), ['order_id' => 'id']);

}

public function getItems()

{

return $this->hasMany(Item::className(), ['id' => 'item_id'])

->via('orderItems');

}

}

The usage of relations declared with a junction table is the same as that of
normal relations. For example,

// SELECT * FROM `order` WHERE `id` = 100

$order = Order::findOne(100);

// SELECT * FROM `order_item` WHERE `order_id` = 100

// SELECT * FROM `item` WHERE `item_id` IN (...)

// returns an array of Item objects

$items = $order->items;

Lazy Loading and Eager Loading

In Accessing Relational Data, we explained that you can access a relation
property of an Active Record instance like accessing a normal object prop-
erty. A SQL statement will be executed only when you access the relation
property the �rst time. We call such relational data accessing method lazy

loading. For example,

// SELECT * FROM `customer` WHERE `id` = 123

$customer = Customer::findOne(123);

6.3. ACTIVE RECORD 283

// SELECT * FROM `order` WHERE `customer_id` = 123

$orders = $customer->orders;

// no SQL executed

$orders2 = $customer->orders;

Lazy loading is very convenient to use. However, it may su�er from a per-
formance issue when you need to access the same relation property of mul-
tiple Active Record instances. Consider the following code example. How
many SQL statements will be executed?

// SELECT * FROM `customer` LIMIT 100

$customers = Customer::find()->limit(100)->all();

foreach ($customers as $customer) {

// SELECT * FROM `order` WHERE `customer_id` = ...

$orders = $customer->orders;

}

As you can see from the code comment above, there are 101 SQL statements
being executed! This is because each time you access the orders relation
property of a di�erent Customer object in the for-loop, a SQL statement will
be executed.

To solve this performance problem, you can use the so-called eager loading
approach as shown below,

// SELECT * FROM `customer` LIMIT 100;

// SELECT * FROM `orders` WHERE `customer_id` IN (...)

$customers = Customer::find()

->with('orders')

->limit(100)

->all();

foreach ($customers as $customer) {

// no SQL executed

$orders = $customer->orders;

}

By calling yii\db\ActiveQuery::with(), you instruct Active Record to
bring back the orders for the �rst 100 customers in one single SQL statement.
As a result, you reduce the number of the executed SQL statements from
101 to 2!

You can eagerly load one or multiple relations. You can even eagerly
load nested relations. A nested relation is a relation that is declared within
a related Active Record class. For example, Customer is related with Order

through the orders relation, and Order is related with Item through the items

relation. When querying for Customer, you can eagerly load items using the
nested relation notation orders.items.

The following code shows di�erent usage of yii\db\ActiveQuery::with().
We assume the Customer class has two relations orders and country, while the

284 CHAPTER 6. WORKING WITH DATABASES

Order class has one relation items.

// eager loading both "orders" and "country"

$customers = Customer::find()->with('orders', 'country')->all();

// equivalent to the array syntax below

$customers = Customer::find()->with(['orders', 'country'])->all();

// no SQL executed

$orders= $customers[0]->orders;

// no SQL executed

$country = $customers[0]->country;

// eager loading "orders" and the nested relation "orders.items"

$customers = Customer::find()->with('orders.items')->all();

// access the items of the first order of the first customer

// no SQL executed

$items = $customers[0]->orders[0]->items;

You can eagerly load deeply nested relations, such as a.b.c.d. All parent
relations will be eagerly loaded. That is, when you call yii\db\ActiveQuery
::with() using a.b.c.d, you will eagerly load a, a.b, a.b.c and a.b.c.d.

Info: In general, when eagerly loading N relations among which
M relations are de�ned with a junction table, a total number of N+
M+1 SQL statements will be executed. Note that a nested relation
a.b.c.d counts as 4 relations.

When eagerly loading a relation, you can customize the corresponding rela-
tional query using an anonymous function. For example,

// find customers and bring back together their country and active orders

// SELECT * FROM `customer`

// SELECT * FROM `country` WHERE `id` IN (...)

// SELECT * FROM `order` WHERE `customer_id` IN (...) AND `status` = 1

$customers = Customer::find()->with([

'country',

'orders' => function ($query) {

$query->andWhere(['status' => Order::STATUS_ACTIVE]);

},

])->all();

When customizing the relational query for a relation, you should specify
the relation name as an array key and use an anonymous function as the
corresponding array value. The anonymous function will receive a $query

parameter which represents the yii\db\ActiveQuery object used to perform
the relational query for the relation. In the code example above, we are
modifying the relational query by appending an additional condition about
order status.

Note: If you call yii\db\Query::select() while eagerly load-
ing relations, you have to make sure the columns referenced in the
relation declarations are being selected. Otherwise, the related
models may not be loaded properly. For example,

6.3. ACTIVE RECORD 285

$orders = Order::find()->select(['id', 'amount'])->with('

customer')->all();

// $orders[0]->customer is always `null`. To fix the problem,

you should do the following:

$orders = Order::find()->select(['id', 'amount', 'customer_id'])

->with('customer')->all();

Joining with Relations

Note: The content described in this subsection is only applicable
to relational databases, such as MySQL, PostgreSQL, etc.

The relational queries that we have described so far only reference the
primary table columns when querying for the primary data. In reality we
often need to reference columns in the related tables. For example, we may
want to bring back the customers who have at least one active order. To
solve this problem, we can build a join query like the following:

// SELECT `customer`.* FROM `customer`

// LEFT JOIN `order` ON `order`.`customer_id` = `customer`.`id`

// WHERE `order`.`status` = 1

//

// SELECT * FROM `order` WHERE `customer_id` IN (...)

$customers = Customer::find()

->select('customer.*')

->leftJoin('order', '`order`.`customer_id` = `customer`.`id`')

->where(['order.status' => Order::STATUS_ACTIVE])

->with('orders')

->all();

Note: It is important to disambiguate column names when
building relational queries involving JOIN SQL statements. A
common practice is to pre�x column names with their corres-
ponding table names.

However, a better approach is to exploit the existing relation declarations
by calling yii\db\ActiveQuery::joinWith():

$customers = Customer::find()

->joinWith('orders')

->where(['order.status' => Order::STATUS_ACTIVE])

->all();

Both approaches execute the same set of SQL statements. The latter ap-
proach is much cleaner and drier, though.

By default, yii\db\ActiveQuery::joinWith() will use LEFT JOIN to join
the primary table with the related table. You can specify a di�erent join type
(e.g. RIGHT JOIN) via its third parameter $joinType. If the join type you want
is INNER JOIN, you can simply call yii\db\ActiveQuery::innerJoinWith(),
instead.

286 CHAPTER 6. WORKING WITH DATABASES

Calling yii\db\ActiveQuery::joinWith() will eagerly load the related
data by default. If you do not want to bring in the related data, you can
specify its second parameter $eagerLoading as false.

Like yii\db\ActiveQuery::with(), you can join with one or multiple
relations; you may customize the relation queries on-the-�y; you may join
with nested relations; and you may mix the use of yii\db\ActiveQuery::
with() and yii\db\ActiveQuery::joinWith(). For example,

$customers = Customer::find()->joinWith([

'orders' => function ($query) {

$query->andWhere(['>', 'subtotal', 100]);

},

])->with('country')

->all();

Sometimes when joining two tables, you may need to specify some extra
conditions in the ON part of the JOIN query. This can be done by calling the
yii\db\ActiveQuery::onCondition() method like the following:

// SELECT `customer`.* FROM `customer`

// LEFT JOIN `order` ON `order`.`customer_id` = `customer`.`id` AND `order

`.`status` = 1

//

// SELECT * FROM `order` WHERE `customer_id` IN (...)

$customers = Customer::find()->joinWith([

'orders' => function ($query) {

$query->onCondition(['order.status' => Order::STATUS_ACTIVE]);

},

])->all();

This above query brings back all customers, and for each customer it brings
back all active orders. Note that this di�ers from our earlier example which
only brings back customers who have at least one active order.

Info: When yii\db\ActiveQuery is speci�ed with a condition
via yii\db\ActiveQuery::onCondition(), the condition will be
put in the ON part if the query involves a JOIN query. If the query
does not involve JOIN, the on-condition will be automatically
appended to the WHERE part of the query. Thus it may only contain
conditions including columns of the related table.

Relation table aliases As noted before, when using JOIN in a query,
we need to disambiguate column names. Therefor often an alias is de�ned
for a table. Setting an alias for the relational query would be possible by
customizing the relation query in the following way:

$query->joinWith([

'orders' => function ($q) {

$q->from(['o' => Order::tableName()]);

},

])

6.3. ACTIVE RECORD 287

This however looks very complicated and involves either hardcoding the re-
lated objects table name or calling Order::tableName(). Since version 2.0.7,
Yii provides a shortcut for this. You may now de�ne and use the alias for
the relation table like the following:

// join the orders relation and sort the result by orders.id

$query->joinWith(['orders o'])->orderBy('o.id');

The above syntax works for simple relations. If you need an alias for an
intermediate table when joining over nested relations, e.g. $query->joinWith

(['orders.product']), you need to nest the joinWith calls like in the following
example:

$query->joinWith(['orders o' => function($q) {

$q->joinWith('product p');

}])

->where('o.amount > 100');

Inverse Relations

Relation declarations are often reciprocal between two Active Record classes.
For example, Customer is related to Order via the orders relation, and Order is
related back to Customer via the customer relation.

class Customer extends ActiveRecord

{

public function getOrders()

{

return $this->hasMany(Order::className(), ['customer_id' => 'id']);

}

}

class Order extends ActiveRecord

{

public function getCustomer()

{

return $this->hasOne(Customer::className(), ['id' => 'customer_id'])

;

}

}

Now consider the following piece of code:

// SELECT * FROM `customer` WHERE `id` = 123

$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123

$order = $customer->orders[0];

// SELECT * FROM `customer` WHERE `id` = 123

$customer2 = $order->customer;

// displays "not the same"

echo $customer2 === $customer ? 'same' : 'not the same';

288 CHAPTER 6. WORKING WITH DATABASES

We would think $customer and $customer2 are the same, but they are not!
Actually they do contain the same customer data, but they are di�erent ob-
jects. When accessing $order->customer, an extra SQL statement is executed
to populate a new object $customer2.

To avoid the redundant execution of the last SQL statement in the above
example, we should tell Yii that customer is an inverse relation of orders by
calling the yii\db\ActiveQuery::inverseOf() method like shown below:

class Customer extends ActiveRecord

{

public function getOrders()

{

return $this->hasMany(Order::className(), ['customer_id' => 'id'])->

inverseOf('customer');

}

}

With this modi�ed relation declaration, we will have:

// SELECT * FROM `customer` WHERE `id` = 123

$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123

$order = $customer->orders[0];

// No SQL will be executed

$customer2 = $order->customer;

// displays "same"

echo $customer2 === $customer ? 'same' : 'not the same';

Note: Inverse relations cannot be de�ned for relations involving
a junction table. That is, if a relation is de�ned with yii\db

\ActiveQuery::via() or yii\db\ActiveQuery::viaTable(), you
should not call yii\db\ActiveQuery::inverseOf() further.

6.3.11 Saving Relations

When working with relational data, you often need to establish relationships
between di�erent data or destroy existing relationships. This requires setting
proper values for the columns that de�ne the relations. Using Active Record,
you may end up writing the code like the following:

$customer = Customer::findOne(123);

$order = new Order();

$order->subtotal = 100;

// ...

// setting the attribute that defines the "customer" relation in Order

$order->customer_id = $customer->id;

$order->save();

6.3. ACTIVE RECORD 289

Active Record provides the yii\db\ActiveRecord::link() method that al-
lows you to accomplish this task more nicely:

$customer = Customer::findOne(123);

$order = new Order();

$order->subtotal = 100;

// ...

$order->link('customer', $customer);

The yii\db\ActiveRecord::link() method requires you to specify the re-
lation name and the target Active Record instance that the relationship
should be established with. The method will modify the values of the attrib-
utes that link two Active Record instances and save them to the database. In
the above example, it will set the customer_id attribute of the Order instance
to be the value of the id attribute of the Customer instance and then save it
to the database.

Note: You cannot link two newly created Active Record in-
stances.

The bene�t of using yii\db\ActiveRecord::link() is even more obvious
when a relation is de�ned via a junction table. For example, you may use
the following code to link an Order instance with an Item instance:

$order->link('items', $item);

The above code will automatically insert a row in the order_item junction
table to relate the order with the item.

Info: The yii\db\ActiveRecord::link() method will NOT
perform any data validation while saving the a�ected Active Re-
cord instance. It is your responsibility to validate any input data
before calling this method.

The opposite operation to yii\db\ActiveRecord::link() is yii\db\ActiveRecord
::unlink() which breaks an existing relationship between two Active Re-
cord instances. For example,

$customer = Customer::find()->with('orders')->where(['id' => 123])->one();

$customer->unlink('orders', $customer->orders[0]);

By default, the yii\db\ActiveRecord::unlink() method will set the for-
eign key value(s) that specify the existing relationship to be null. You may,
however, choose to delete the table row that contains the foreign key value
by passing the $delete parameter as true to the method.

When a junction table is involved in a relation, calling yii\db\ActiveRecord
::unlink() will cause the foreign keys in the junction table to be cleared,
or the deletion of the corresponding row in the junction table if $delete is
true.

290 CHAPTER 6. WORKING WITH DATABASES

6.3.12 Cross-Database Relations

Active Record allows you to declare relations between Active Record classes
that are powered by di�erent databases. The databases can be of di�er-
ent types (e.g. MySQL and PostgreSQL, or MS SQL and MongoDB), and
they can run on di�erent servers. You can use the same syntax to perform
relational queries. For example,

// Customer is associated with the "customer" table in a relational database

(e.g. MySQL)

class Customer extends \yii\db\ActiveRecord

{

public static function tableName()

{

return 'customer';

}

public function getComments()

{

// a customer has many comments

return $this->hasMany(Comment::className(), ['customer_id' => 'id'])

;

}

}

// Comment is associated with the "comment" collection in a MongoDB database

class Comment extends \yii\mongodb\ActiveRecord

{

public static function collectionName()

{

return 'comment';

}

public function getCustomer()

{

// a comment has one customer

return $this->hasOne(Customer::className(), ['id' => 'customer_id'])

;

}

}

$customers = Customer::find()->with('comments')->all();

You can use most of the relational query features that have been described
in this section.

Note: Usage of yii\db\ActiveQuery::joinWith() is limited
to databases that allow cross-database JOIN queries. For this
reason, you cannot use this method in the above example because
MongoDB does not support JOIN.

6.3. ACTIVE RECORD 291

6.3.13 Customizing Query Classes

By default, all Active Record queries are supported by yii\db\ActiveQuery.
To use a customized query class in an Active Record class, you should over-
ride the yii\db\ActiveRecord::find() method and return an instance of
your customized query class. For example,

// file Comment.php

namespace app\models;

use yii\db\ActiveRecord;

class Comment extends ActiveRecord

{

public static function find()

{

return new CommentQuery(get_called_class());

}

}

Now whenever you are performing a query (e.g. find(), findOne()) or de�ning
a relation (e.g. hasOne()) with Comment, you will be calling an instance of
CommentQuery instead of ActiveQuery.

You now have to de�ne the CommentQuery class, which can be customized in
many creative ways to improve your query building experience. For example,

// file CommentQuery.php

namespace app\models;

use yii\db\ActiveQuery;

class CommentQuery extends ActiveQuery

{

// conditions appended by default (can be skipped)

public function init()

{

$this->andOnCondition(['deleted' => false]);

parent::init();

}

// ... add customized query methods here ...

public function active($state = true)

{

return $this->andOnCondition(['active' => $state]);

}

}

Note: Instead of calling yii\db\ActiveQuery::onCondition(),
you usually should call yii\db\ActiveQuery::andOnCondition()
or yii\db\ActiveQuery::orOnCondition() to append additional
conditions when de�ning new query building methods so that any
existing conditions are not overwritten.

292 CHAPTER 6. WORKING WITH DATABASES

This allows you to write query building code like the following:

$comments = Comment::find()->active()->all();

$inactiveComments = Comment::find()->active(false)->all();

Tip: In big projects, it is recommended that you use customized
query classes to hold most query-related code so that the Active
Record classes can be kept clean.

You can also use the new query building methods when de�ning relations
about Comment or performing relational query:

class Customer extends \yii\db\ActiveRecord

{

public function getActiveComments()

{

return $this->hasMany(Comment::className(), ['customer_id' => 'id'])

->active();

}

}

$customers = Customer::find()->joinWith('activeComments')->all();

// or alternatively

class Customer extends \yii\db\ActiveRecord

{

public function getComments()

{

return $this->hasMany(Comment::className(), ['customer_id' => 'id'])

;

}

}

$customers = Customer::find()->joinWith([

'comments' => function($q) {

$q->active();

}

])->all();

Info: In Yii 1.1, there is a concept called scope. Scope is no
longer directly supported in Yii 2.0, and you should use custom-
ized query classes and query methods to achieve the same goal.

6.3.14 Selecting extra �elds

When Active Record instance is populated from query results, its attributes
are �lled up by corresponding column values from received data set.

You are able to fetch additional columns or values from query and store
it inside the Active Record. For example, assume we have a table named
room, which contains information about rooms available in the hotel. Each

6.3. ACTIVE RECORD 293

room stores information about its geometrical size using �elds length, width,
height. Imagine we need to retrieve list of all available rooms with their
volume in descendant order. So you can not calculate volume using PHP,
because we need to sort the records by its value, but you also want volume

to be displayed in the list. To achieve the goal, you need to declare an extra
�eld in your Room Active Record class, which will store volume value:

class Room extends \yii\db\ActiveRecord

{

public $volume;

// ...

}

Then you need to compose a query, which calculates volume of the room and
performs the sort:

$rooms = Room::find()

->select([

'{{room}}.*', // select all columns

'([[length]] * [[width]] * [[height]]) AS volume', // calculate a

volume

])

->orderBy('volume DESC') // apply sort

->all();

foreach ($rooms as $room) {

echo $room->volume; // contains value calculated by SQL

}

Ability to select extra �elds can be exceptionally useful for aggregation quer-
ies. Assume you need to display a list of customers with the count of orders
they have made. First of all, you need to declare a Customer class with orders

relation and extra �eld for count storage:

class Customer extends \yii\db\ActiveRecord

{

public $ordersCount;

// ...

public function getOrders()

{

return $this->hasMany(Order::className(), ['customer_id' => 'id']);

}

}

Then you can compose a query, which joins the orders and calculates their
count:

$customers = Customer::find()

->select([

'{{customer}}.*', // select all customer fields

'COUNT({{order}}.id) AS ordersCount' // calculate orders count

294 CHAPTER 6. WORKING WITH DATABASES

])

->joinWith('orders') // ensure table junction

->groupBy('{{customer}}.id') // group the result to ensure aggregation

function works

->all();

A disadvantage of using this method would be that, if the information isn't
loaded on the SQL query - it has to be calculated separately. Thus, if you
have found particular record via regular query without extra select state-
ments, it will be unable to return actual value for the extra �eld. Same will
happen for the newly saved record.

$room = new Room();

$room->length = 100;

$room->width = 50;

$room->height = 2;

$room->volume; // this value will be `null`, since it was not declared yet

Using the yii\db\BaseActiveRecord::__get() and yii\db\BaseActiveRecord
::__set() magic methods we can emulate the behavior of a property:

class Room extends \yii\db\ActiveRecord

{

private $_volume;

public function setVolume($volume)

{

$this->_volume = (float) $volume;

}

public function getVolume()

{

if (empty($this->length) || empty($this->width) || empty($this->

height)) {

return null;

}

if ($this->_volume === null) {

$this->setVolume(

$this->length * $this->width * $this->height

);

}

return $this->_volume;

}

// ...

}

When the select query doesn't provide the volume, the model will be able to
calculate it automatically using the attributes of the model.

You can calculate the aggregation �elds as well using de�ned relations:

class Customer extends \yii\db\ActiveRecord

6.3. ACTIVE RECORD 295

{

private $_ordersCount;

public function setOrdersCount($count)

{

$this->_ordersCount = (int) $count;

}

public function getOrdersCount()

{

if ($this->isNewRecord) {

return null; // this avoid calling a query searching for null

primary keys

}

if ($this->_ordersCount === null) {

$this->setOrdersCount($this->getOrders()->count()); // calculate

aggregation on demand from relation

}

return $this->_ordersCount;

}

// ...

public function getOrders()

{

return $this->hasMany(Order::className(), ['customer_id' => 'id']);

}

}

With this code, in case `ordersCount' is present in `select' statement - Customer
::ordersCount will be populated by query results, otherwise it will be calcu-
lated on demand using Customer::orders relation.

This approach can be as well used for creation of the shortcuts for some
relational data, especially for the aggregation. For example:

class Customer extends \yii\db\ActiveRecord

{

/**

* Defines read-only virtual property for aggregation data.

*/

public function getOrdersCount()

{

if ($this->isNewRecord) {

return null; // this avoid calling a query searching for null

primary keys

}

return empty($this->ordersAggregation) ? 0 : $this->

ordersAggregation[0]['counted'];

}

/**

296 CHAPTER 6. WORKING WITH DATABASES

* Declares normal 'orders' relation.

*/

public function getOrders()

{

return $this->hasMany(Order::className(), ['customer_id' => 'id']);

}

/**

* Declares new relation based on 'orders', which provides aggregation.

*/

public function getOrdersAggregation()

{

return $this->getOrders()

->select(['customer_id', 'counted' => 'count(*)'])

->groupBy('customer_id')

->asArray(true);

}

// ...

}

foreach (Customer::find()->with('ordersAggregation')->all() as $customer) {

echo $customer->ordersCount; // outputs aggregation data from relation

without extra query due to eager loading

}

$customer = Customer::findOne($pk);

$customer->ordersCount; // output aggregation data from lazy loaded relation

6.4 Database Migration

During the course of developing and maintaining a database-driven applic-
ation, the structure of the database being used evolves just like the source
code does. For example, during the development of an application, a new
table may be found necessary; after the application is deployed to produc-
tion, it may be discovered that an index should be created to improve the
query performance; and so on. Because a database structure change often
requires some source code changes, Yii supports the so-called database mi-

gration feature that allows you to keep track of database changes in terms
of database migrations which are version-controlled together with the source
code.

The following steps show how database migration can be used by a team
during development:

1. Tim creates a new migration (e.g. creates a new table, changes a
column de�nition, etc.).

2. Tim commits the new migration into the source control system (e.g.
Git, Mercurial).

6.4. DATABASE MIGRATION 297

3. Doug updates his repository from the source control system and re-
ceives the new migration.

4. Doug applies the migration to his local development database, thereby
synchronizing his database to re�ect the changes that Tim has made.

And the following steps show how to deploy a new release with database
migrations to production:

1. Scott creates a release tag for the project repository that contains some
new database migrations.

2. Scott updates the source code on the production server to the release
tag.

3. Scott applies any accumulated database migrations to the production
database.

Yii provides a set of migration command line tools that allow you to:
• create new migrations;
• apply migrations;
• revert migrations;
• re-apply migrations;
• show migration history and status.

All these tools are accessible through the command yii migrate. In this
section we will describe in detail how to accomplish various tasks using these
tools. You may also get the usage of each tool via the help command yii

help migrate.

Tip: migrations could a�ect not only database schema but ad-
just existing data to �t new schema, create RBAC hierarchy or
clean up cache.

6.4.1 Creating Migrations

To create a new migration, run the following command:

yii migrate/create <name>

The required name argument gives a brief description about the new migra-
tion. For example, if the migration is about creating a new table named news,
you may use the name create_news_table and run the following command:

yii migrate/create create_news_table

Note: Because the name argument will be used as part of the
generated migration class name, it should only contain letters,
digits, and/or underscore characters.

298 CHAPTER 6. WORKING WITH DATABASES

The above command will create a new PHP class �le named m150101_185401_create_news_table

.php in the @app/migrations directory. The �le contains the following code
which mainly declares a migration class m150101_185401_create_news_table with
the skeleton code:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration

{

public function up()

{

}

public function down()

{

echo "m101129_185401_create_news_table cannot be reverted.\n";

return false;

}

/*

// Use safeUp/safeDown to run migration code within a transaction

public function safeUp()

{

}

public function safeDown()

{

}

*/

}

Each database migration is de�ned as a PHP class extending from yii\db

\Migration. The migration class name is automatically generated in the
format of m<YYMMDD_HHMMSS>_<Name>, where

• <YYMMDD_HHMMSS> refers to the UTC datetime at which the migration
creation command is executed.

• <Name> is the same as the value of the name argument that you provide
to the command.

In the migration class, you are expected to write code in the up() method
that makes changes to the database structure. You may also want to write
code in the down() method to revert the changes made by up(). The up()

method is invoked when you upgrade the database with this migration,
while the down() method is invoked when you downgrade the database. The
following code shows how you may implement the migration class to create
a news table:

<?php

6.4. DATABASE MIGRATION 299

use yii\db\Schema;

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration

{

public function up()

{

$this->createTable('news', [

'id' => Schema::TYPE_PK,

'title' => Schema::TYPE_STRING . ' NOT NULL',

'content' => Schema::TYPE_TEXT,

]);

}

public function down()

{

$this->dropTable('news');

}

}

Info: Not all migrations are reversible. For example, if the up()

method deletes a row of a table, you may not be able to recover
this row in the down() method. Sometimes, you may be just too
lazy to implement the down(), because it is not very common
to revert database migrations. In this case, you should return
false in the down() method to indicate that the migration is not
reversible.

The base migration class yii\db\Migration exposes a database connection
via the yii\db\Migration::db property. You can use it to manipulate the
database schema using the methods as described in Working with Database
Schema.

Rather than using physical types, when creating a table or column you
should use abstract types so that your migrations are independent of speci�c
DBMS. The yii\db\Schema class de�nes a set of constants to represent the
supported abstract types. These constants are named in the format of TYPE_
<Name>. For example, TYPE_PK refers to auto-incremental primary key type;
TYPE_STRING refers to a string type. When a migration is applied to a partic-
ular database, the abstract types will be translated into the corresponding
physical types. In the case of MySQL, TYPE_PK will be turned into int(11)

NOT NULL AUTO_INCREMENT PRIMARY KEY, while TYPE_STRING becomes varchar(255).
You can append additional constraints when using abstract types. In the

above example, NOT NULL is appended to Schema::TYPE_STRING to specify that
the column cannot be null.

Info: The mapping between abstract types and physical types
is speci�ed by the yii\db\QueryBuilder::$typeMap property in
each concrete QueryBuilder class.

300 CHAPTER 6. WORKING WITH DATABASES

Since version 2.0.6, you can make use of the newly introduced schema builder
which provides more convenient way of de�ning column schema. So the
migration above could be written like the following:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration

{

public function up()

{

$this->createTable('news', [

'id' => $this->primaryKey(),

'title' => $this->string()->notNull(),

'content' => $this->text(),

]);

}

public function down()

{

$this->dropTable('news');

}

}

A list of all available methods for de�ning the column types is available in
the API documentation of yii\db\SchemaBuilderTrait.

6.4.2 Generating Migrations

Since version 2.0.7 migration console provides a convenient way to create
migrations.

If the migration name is of a special form, for example create_xxx_table

or drop_xxx_table then the generated migration �le will contain extra code,
in this case for creating/dropping tables. In the following all variants of this
feature are described.

Create Table

yii migrate/create create_post_table

generates

/**

* Handles the creation for table `post`.

*/

class m150811_220037_create_post_table extends Migration

{

/**

* @inheritdoc

*/

public function up()

6.4. DATABASE MIGRATION 301

{

$this->createTable('post', [

'id' => $this->primaryKey()

]);

}

/**

* @inheritdoc

*/

public function down()

{

$this->dropTable('post');

}

}

To create table �elds right away, specify them via --fields option.

yii migrate/create create_post_table --fields="title:string,body:text"

generates

/**

* Handles the creation for table `post`.

*/

class m150811_220037_create_post_table extends Migration

{

/**

* @inheritdoc

*/

public function up()

{

$this->createTable('post', [

'id' => $this->primaryKey(),

'title' => $this->string(),

'body' => $this->text(),

]);

}

/**

* @inheritdoc

*/

public function down()

{

$this->dropTable('post');

}

}

You can specify more �eld parameters.

yii migrate/create create_post_table --fields="title:string(12):notNull:

unique,body:text"

generates

/**

* Handles the creation for table `post`.

*/

302 CHAPTER 6. WORKING WITH DATABASES

class m150811_220037_create_post_table extends Migration

{

/**

* @inheritdoc

*/

public function up()

{

$this->createTable('post', [

'id' => $this->primaryKey(),

'title' => $this->string(12)->notNull()->unique(),

'body' => $this->text()

]);

}

/**

* @inheritdoc

*/

public function down()

{

$this->dropTable('post');

}

}

Note: primary key is added automatically and is named id by
default. If you want to use another name you may specify it
explicitly like --fields="name:primaryKey".

Foreign keys Since 2.0.8 the generator supports foreign keys using the
foreignKey keyword.

yii migrate/create create_post_table --fields="author_id:integer:notNull:

foreignKey(user),category_id:integer:defaultValue(1):foreignKey,title:

string,body:text"

generates

/**

* Handles the creation for table `post`.

* Has foreign keys to the tables:

*

* - `user`

* - `category`

*/

class m160328_040430_create_post_table extends Migration

{

/**

* @inheritdoc

*/

public function up()

{

$this->createTable('post', [

'id' => $this->primaryKey(),

'author_id' => $this->integer()->notNull(),

'category_id' => $this->integer()->defaultValue(1),

6.4. DATABASE MIGRATION 303

'title' => $this->string(),

'body' => $this->text(),

]);

// creates index for column `author_id`

$this->createIndex(

'idx-post-author_id',

'post',

'author_id'

);

// add foreign key for table `user`

$this->addForeignKey(

'fk-post-author_id',

'post',

'author_id',

'user',

'id',

'CASCADE'

);

// creates index for column `category_id`

$this->createIndex(

'idx-post-category_id',

'post',

'category_id'

);

// add foreign key for table `category`

$this->addForeignKey(

'fk-post-category_id',

'post',

'category_id',

'category',

'id',

'CASCADE'

);

}

/**

* @inheritdoc

*/

public function down()

{

// drops foreign key for table `user`

$this->dropForeignKey(

'fk-post-author_id',

'post'

);

// drops index for column `author_id`

$this->dropIndex(

'idx-post-author_id',

'post'

304 CHAPTER 6. WORKING WITH DATABASES

);

// drops foreign key for table `category`

$this->dropForeignKey(

'fk-post-category_id',

'post'

);

// drops index for column `category_id`

$this->dropIndex(

'idx-post-category_id',

'post'

);

$this->dropTable('post');

}

}

The position of the foreignKey keyword in the column description doesn't
change the generated code. That means:

• author_id:integer:notNull:foreignKey(user)

• author_id:integer:foreignKey(user):notNull

• author_id:foreignKey(user):integer:notNull

All generate the same code.
The foreignKey keyword can take a parameter between parenthesis which

will be the name of the related table for the generated foreign key. If no
parameter is passed then the table name will be deduced from the column
name.

In the example above author_id:integer:notNull:foreignKey(user) will gen-
erate a column named author_id with a foreign key to the user table while
category_id:integer:defaultValue(1):foreignKey will generate a column category_id

with a foreign key to the category table.
Since 2.0.11, foreignKey keyword accepts a second parameter, separated

by whitespace. It accepts the name of the related column for the foreign
key generated. If no second parameter is passed, the column name will be
fetched from table schema. If no schema exists, primary key isn't set or is
composite, default name id will be used.

Drop Table

yii migrate/create drop_post_table --fields="title:string(12):notNull:unique

,body:text"

generates

class m150811_220037_drop_post_table extends Migration

{

public function up()

{

$this->dropTable('post');

6.4. DATABASE MIGRATION 305

}

public function down()

{

$this->createTable('post', [

'id' => $this->primaryKey(),

'title' => $this->string(12)->notNull()->unique(),

'body' => $this->text()

]);

}

}

Add Column

If the migration name is of the form add_xxx_column_to_yyy_table then the �le
content would contain addColumn and dropColumn statements necessary.

To add column:

yii migrate/create add_position_column_to_post_table --fields="position:

integer"

generates

class m150811_220037_add_position_column_to_post_table extends Migration

{

public function up()

{

$this->addColumn('post', 'position', $this->integer());

}

public function down()

{

$this->dropColumn('post', 'position');

}

}

You can specify multiple columns as follows:

yii migrate/create add_xxx_column_yyy_column_to_zzz_table --fields="xxx:

integer,yyy:text"

Drop Column

If the migration name is of the form drop_xxx_column_from_yyy_table then the
�le content would contain addColumn and dropColumn statements necessary.

yii migrate/create drop_position_column_from_post_table --fields="position:

integer"

generates

class m150811_220037_drop_position_column_from_post_table extends Migration

{

public function up()

{

$this->dropColumn('post', 'position');

306 CHAPTER 6. WORKING WITH DATABASES

}

public function down()

{

$this->addColumn('post', 'position', $this->integer());

}

}

Add Junction Table

If the migration name is of the form create_junction_table_for_xxx_and_yyy_tables

or create_junction_xxx_and_yyy_tables then code necessary to create junction
table will be generated.

yii migrate/create create_junction_table_for_post_and_tag_tables --fields="

created_at:dateTime"

generates

/**

* Handles the creation for table `post_tag`.

* Has foreign keys to the tables:

*

* - `post`

* - `tag`

*/

class m160328_041642_create_junction_table_for_post_and_tag_tables extends

Migration

{

/**

* @inheritdoc

*/

public function up()

{

$this->createTable('post_tag', [

'post_id' => $this->integer(),

'tag_id' => $this->integer(),

'created_at' => $this->dateTime(),

'PRIMARY KEY(post_id, tag_id)',

]);

// creates index for column `post_id`

$this->createIndex(

'idx-post_tag-post_id',

'post_tag',

'post_id'

);

// add foreign key for table `post`

$this->addForeignKey(

'fk-post_tag-post_id',

'post_tag',

'post_id',

'post',

6.4. DATABASE MIGRATION 307

'id',

'CASCADE'

);

// creates index for column `tag_id`

$this->createIndex(

'idx-post_tag-tag_id',

'post_tag',

'tag_id'

);

// add foreign key for table `tag`

$this->addForeignKey(

'fk-post_tag-tag_id',

'post_tag',

'tag_id',

'tag',

'id',

'CASCADE'

);

}

/**

* @inheritdoc

*/

public function down()

{

// drops foreign key for table `post`

$this->dropForeignKey(

'fk-post_tag-post_id',

'post_tag'

);

// drops index for column `post_id`

$this->dropIndex(

'idx-post_tag-post_id',

'post_tag'

);

// drops foreign key for table `tag`

$this->dropForeignKey(

'fk-post_tag-tag_id',

'post_tag'

);

// drops index for column `tag_id`

$this->dropIndex(

'idx-post_tag-tag_id',

'post_tag'

);

$this->dropTable('post_tag');

}

}

308 CHAPTER 6. WORKING WITH DATABASES

Since 2.0.11 foreign key column names for junction tables are fetched from
table schema. In case table isn't de�ned in schema, or the primary key isn't
set or is composite, default name id is used.

Transactional Migrations

While performing complex DB migrations, it is important to ensure each mi-
gration to either succeed or fail as a whole so that the database can maintain
integrity and consistency. To achieve this goal, it is recommended that you
enclose the DB operations of each migration in a transaction.

An even easier way of implementing transactional migrations is to put
migration code in the safeUp() and safeDown() methods. These two methods
di�er from up() and down() in that they are enclosed implicitly in a transac-
tion. As a result, if any operation in these methods fails, all prior operations
will be rolled back automatically.

In the following example, besides creating the news table we also insert
an initial row into this table.

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration

{

public function safeUp()

{

$this->createTable('news', [

'id' => $this->primaryKey(),

'title' => $this->string()->notNull(),

'content' => $this->text(),

]);

$this->insert('news', [

'title' => 'test 1',

'content' => 'content 1',

]);

}

public function safeDown()

{

$this->delete('news', ['id' => 1]);

$this->dropTable('news');

}

}

Note that usually when you perform multiple DB operations in safeUp(), you
should reverse their execution order in safeDown(). In the above example we
�rst create the table and then insert a row in safeUp(); while in safeDown()

we �rst delete the row and then drop the table.

6.4. DATABASE MIGRATION 309

Note: Not all DBMS support transactions. And some DB quer-
ies cannot be put into a transaction. For some examples, please
refer to implicit commit23. If this is the case, you should still
implement up() and down(), instead.

Database Accessing Methods

The base migration class yii\db\Migration provides a set of methods to
let you access and manipulate databases. You may �nd these methods are
named similarly as the DAO methods provided by the yii\db\Command class.
For example, the yii\db\Migration::createTable() method allows you to
create a new table, just like yii\db\Command::createTable() does.

The bene�t of using the methods provided by yii\db\Migration is that
you do not need to explicitly create yii\db\Command instances and the exe-
cution of each method will automatically display useful messages telling you
what database operations are done and how long they take.

Below is the list of all these database accessing methods:

• yii\db\Migration::execute(): executing a SQL statement
• yii\db\Migration::insert(): inserting a single row
• yii\db\Migration::batchInsert(): inserting multiple rows
• yii\db\Migration::update(): updating rows
• yii\db\Migration::delete(): deleting rows
• yii\db\Migration::createTable(): creating a table
• yii\db\Migration::renameTable(): renaming a table
• yii\db\Migration::dropTable(): removing a table
• yii\db\Migration::truncateTable(): removing all rows in a table
• yii\db\Migration::addColumn(): adding a column
• yii\db\Migration::renameColumn(): renaming a column
• yii\db\Migration::dropColumn(): removing a column
• yii\db\Migration::alterColumn(): altering a column
• yii\db\Migration::addPrimaryKey(): adding a primary key
• yii\db\Migration::dropPrimaryKey(): removing a primary key
• yii\db\Migration::addForeignKey(): adding a foreign key
• yii\db\Migration::dropForeignKey(): removing a foreign key
• yii\db\Migration::createIndex(): creating an index
• yii\db\Migration::dropIndex(): removing an index
• yii\db\Migration::addCommentOnColumn(): adding comment to column
• yii\db\Migration::dropCommentFromColumn(): dropping comment
from column

• yii\db\Migration::addCommentOnTable(): adding comment to table
• yii\db\Migration::dropCommentFromTable(): dropping comment from
table

23http://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html

http://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html

310 CHAPTER 6. WORKING WITH DATABASES

Info: yii\db\Migration does not provide a database query
method. This is because you normally do not need to display
extra message about retrieving data from a database. It is also
because you can use the powerful Query Builder to build and run
complex queries.

Note: When manipulating data using a migration you may �nd
that using your Active Record classes for this might be useful
because some of the logic is already implemented there. Keep in
mind however, that in contrast to code written in the migrations,
who's nature is to stay constant forever, application logic is sub-
ject to change. So when using Active Record in migration code,
changes to the logic in the Active Record layer may accidentally
break existing migrations. For this reason migration code should
be kept independent from other application logic such as Active
Record classes.

6.4.3 Applying Migrations

To upgrade a database to its latest structure, you should apply all available
new migrations using the following command:

yii migrate

This command will list all migrations that have not been applied so far. If
you con�rm that you want to apply these migrations, it will run the up()

or safeUp() method in every new migration class, one after another, in the
order of their timestamp values. If any of the migrations fails, the command
will quit without applying the rest of the migrations.

Tip: In case you don't have command line at your server you
may try web shell24 extension.

For each migration that has been successfully applied, the command will
insert a row into a database table named migration to record the successful
application of the migration. This will allow the migration tool to identify
which migrations have been applied and which have not.

Info: The migration tool will automatically create the migration

table in the database speci�ed by the yii\console\controllers
\MigrateController::db option of the command. By default,
the database is speci�ed by the db application component.

Sometimes, you may only want to apply one or a few new migrations, instead
of all available migrations. You can do so by specifying the number of mi-
grations that you want to apply when running the command. For example,
the following command will try to apply the next three available migrations:

24https://github.com/samdark/yii2-webshell

https://github.com/samdark/yii2-webshell

6.4. DATABASE MIGRATION 311

yii migrate 3

You can also explicitly specify a particular migration to which the database
should be migrated by using the migrate/to command in one of the following
formats:

yii migrate/to 150101_185401 # using timestamp to

specify the migration

yii migrate/to "2015-01-01 18:54:01" # using a string that can

be parsed by strtotime()

yii migrate/to m150101_185401_create_news_table # using full name

yii migrate/to 1392853618 # using UNIX timestamp

If there are any unapplied migrations earlier than the speci�ed one, they will
all be applied before the speci�ed migration is applied.

If the speci�ed migration has already been applied before, any later ap-
plied migrations will be reverted.

6.4.4 Reverting Migrations

To revert (undo) one or multiple migrations that have been applied before,
you can run the following command:

yii migrate/down # revert the most recently applied migration

yii migrate/down 3 # revert the most 3 recently applied migrations

Note: Not all migrations are reversible. Trying to revert such
migrations will cause an error and stop the entire reverting pro-
cess.

6.4.5 Redoing Migrations

Redoing migrations means �rst reverting the speci�ed migrations and then
applying again. This can be done as follows:

yii migrate/redo # redo the last applied migration

yii migrate/redo 3 # redo the last 3 applied migrations

Note: If a migration is not reversible, you will not be able to
redo it.

6.4.6 Listing Migrations

To list which migrations have been applied and which are not, you may use
the following commands:

yii migrate/history # showing the last 10 applied migrations

yii migrate/history 5 # showing the last 5 applied migrations

yii migrate/history all # showing all applied migrations

312 CHAPTER 6. WORKING WITH DATABASES

yii migrate/new # showing the first 10 new migrations

yii migrate/new 5 # showing the first 5 new migrations

yii migrate/new all # showing all new migrations

6.4.7 Modifying Migration History

Instead of actually applying or reverting migrations, sometimes you may
simply want to mark that your database has been upgraded to a particular
migration. This often happens when you manually change the database to
a particular state and you do not want the migration(s) for that change to
be re-applied later. You can achieve this goal with the following command:

yii migrate/mark 150101_185401 # using timestamp to

specify the migration

yii migrate/mark "2015-01-01 18:54:01" # using a string that

can be parsed by strtotime()

yii migrate/mark m150101_185401_create_news_table # using full name

yii migrate/mark 1392853618 # using UNIX timestamp

The command will modify the migration table by adding or deleting cer-
tain rows to indicate that the database has been applied migrations to the
speci�ed one. No migrations will be applied or reverted by this command.

6.4.8 Customizing Migrations

There are several ways to customize the migration command.

Using Command Line Options

The migration command comes with a few command-line options that can
be used to customize its behaviors:

• interactive: boolean (defaults to true), speci�es whether to perform
migrations in an interactive mode. When this is true, the user will
be prompted before the command performs certain actions. You may
want to set this to false if the command is being used in a background
process.

• migrationPath: string (defaults to @app/migrations), speci�es the direct-
ory storing all migration class �les. This can be speci�ed as either a
directory path or a path alias. Note that the directory must exist, or
the command may trigger an error.

• migrationTable: string (defaults to migration), speci�es the name of the
database table for storing migration history information. The table
will be automatically created by the command if it does not exist. You
may also manually create it using the structure version varchar(255)

primary key, apply_time integer.

6.4. DATABASE MIGRATION 313

• db: string (defaults to db), speci�es the ID of the database application
component. It represents the database that will be migrated using this
command.

• templateFile: string (defaults to @yii/views/migration.php), speci�es the
path of the template �le that is used for generating skeleton migration
class �les. This can be speci�ed as either a �le path or a path alias.
The template �le is a PHP script in which you can use a prede�ned
variable named $className to get the migration class name.

• generatorTemplateFiles: array (defaults to `[

'create_table' => '@yii/views/createTableMigration.php',

'drop_table' => '@yii/views/dropTableMigration.php',

'add_column' => '@yii/views/addColumnMigration.php',

'drop_column' => '@yii/views/dropColumnMigration.php',

'create_junction' => '@yii/views/createTableMigration.php'

]`), speci�es template �les for generating migration code. See �Gener-
ating Migrations� for more details.

• fields: array of column de�nition strings used for creating migration
code. Defaults to []. The format of each de�nition is COLUMN_NAME

:COLUMN_TYPE:COLUMN_DECORATOR. For example, --fields=name:string(12):

notNull produces a string column of size 12 which is not null.

The following example shows how you can use these options.

For example, if we want to migrate a forum module whose migration �les
are located within the module's migrations directory, we can use the following
command:

migrate the migrations in a forum module non-interactively

yii migrate --migrationPath=@app/modules/forum/migrations --interactive=0

Con�guring Command Globally

Instead of entering the same option values every time you run the migration
command, you may con�gure it once for all in the application con�guration
like shown below:

return [

'controllerMap' => [

'migrate' => [

'class' => 'yii\console\controllers\MigrateController',

'migrationTable' => 'backend_migration',

],

],

];

With the above con�guration, each time you run the migration command,
the backend_migration table will be used to record the migration history. You
no longer need to specify it via the migrationTable command-line option.

314 CHAPTER 6. WORKING WITH DATABASES

Namespaced Migrations

Since 2.0.10 you can use namespaces for the migration classes. You can
specify the list of the migration namespaces via yii\console\controllers

\MigrateController::migrationNamespaces. Using of the namespaces for
migration classes allows you usage of the several source locations for the
migrations. For example:

return [

'controllerMap' => [

'migrate' => [

'class' => 'yii\console\controllers\MigrateController',

'migrationNamespaces' => [

'app\migrations', // Common migrations for the whole

application

'module\migrations', // Migrations for the specific project'

s module

'some\extension\migrations', // Migrations for the specific

extension

],

],

],

];

Note: migrations applied from di�erent namespaces will create
a single migration history, e.g. you might be unable to apply or
revert migrations from particular namespace only.

While operating namespaced migrations: creating new, reverting and so on,
you should specify full namespace before migration name. Note that back-
slash (\) symbol is usually considered a special character in the shell, so you
need to escape it properly to avoid shell errors or incorrect behavior. For
example:

yii migrate/create 'app\\migrations\\createUserTable'

Note: migrations speci�ed via yii\console\controllers\MigrateController
::migrationPath can not contain a namespace, namespaced mi-
gration can be applied only via yii\console\controllers\MigrateController
::migrationNamespaces property.

Separated Migrations

Sometimes using single migration history for all project migrations is not de-
sirable. For example: you may install some `blog' extension, which contains
fully separated functionality and contain its own migrations, which should
not a�ect the ones dedicated to main project functionality.

If you want several migrations to be applied and tracked down completely
separated from each other, you can con�gure multiple migration commands
which will use di�erent namespaces and migration history tables:

6.4. DATABASE MIGRATION 315

return [

'controllerMap' => [

// Common migrations for the whole application

'migrate-app' => [

'class' => 'yii\console\controllers\MigrateController',

'migrationNamespaces' => ['app\migrations'],

'migrationTable' => 'migration_app',

],

// Migrations for the specific project's module

'migrate-module' => [

'class' => 'yii\console\controllers\MigrateController',

'migrationNamespaces' => ['module\migrations'],

'migrationTable' => 'migration_module',

],

// Migrations for the specific extension

'migrate-rbac' => [

'class' => 'yii\console\controllers\MigrateController',

'migrationPath' => '@yii/rbac/migrations',

'migrationTable' => 'migration_rbac',

],

],

];

Note that to synchronize database you now need to run multiple commands
instead of one:

yii migrate-app

yii migrate-module

yii migrate-rbac

6.4.9 Migrating Multiple Databases

By default, migrations are applied to the same database speci�ed by the
db application component. If you want them to be applied to a di�erent
database, you may specify the db command-line option like shown below,

yii migrate --db=db2

The above command will apply migrations to the db2 database.

Sometimes it may happen that you want to apply some of the migrations
to one database, while some others to another database. To achieve this goal,
when implementing a migration class you should explicitly specify the DB
component ID that the migration would use, like the following:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration

{

public function init()

{

$this->db = 'db2';

316 CHAPTER 6. WORKING WITH DATABASES

parent::init();

}

}

The above migration will be applied to db2, even if you specify a di�erent
database through the db command-line option. Note that the migration
history will still be recorded in the database speci�ed by the db command-
line option.

If you have multiple migrations that use the same database, it is recom-
mended that you create a base migration class with the above init() code.
Then each migration class can extend from this base class.

Tip: Besides setting the yii\db\Migration::db property, you
can also operate on di�erent databases by creating new database
connections to them in your migration classes. You then use the
DAO methods with these connections to manipulate di�erent
databases.

Another strategy that you can take to migrate multiple databases is to keep
migrations for di�erent databases in di�erent migration paths. Then you
can migrate these databases in separate commands like the following:

yii migrate --migrationPath=@app/migrations/db1 --db=db1

yii migrate --migrationPath=@app/migrations/db2 --db=db2

...

The �rst command will apply migrations in @app/migrations/db1 to the db1

database, the second command will apply migrations in @app/migrations/db2

to db2, and so on.

6.4. DATABASE MIGRATION 317

Error: not existing �le: https://github.com/yiisoft/yii2-sphinx/blob/master/docs/guide/README.md

318 CHAPTER 6. WORKING WITH DATABASES

Error: not existing �le: https://github.com/yiisoft/yii2-redis/blob/master/docs/guide/README.md

6.4. DATABASE MIGRATION 319

Error: not existing �le: https://github.com/yiisoft/yii2-mongodb/blob/master/docs/guide/README.md

320 CHAPTER 6. WORKING WITH DATABASES

Error: not existing �le: https://github.com/yiisoft/yii2-elasticsearch/blob/master/docs/guide/README.md

Chapter 7

Getting Data from Users

7.1 Creating Forms

7.1.1 ActiveRecord based forms: ActiveForm

The primary way of using forms in Yii is through yii\widgets\ActiveForm.
This approach should be preferred when the form is based upon a model.
Additionally, there are some useful methods in yii\helpers\Html that are
typically used for adding buttons and help text to any form.

A form, that is displayed on the client-side, will in most cases have a
corresponding model which is used to validate its input on the server-side
(Check the Validating Input section for more details on validation). When
creating model-based forms, the �rst step is to de�ne the model itself. The
model can be either based upon an Active Record class, representing some
data from the database, or a generic Model class (extending from yii\base

\Model) to capture arbitrary input, for example a login form. In the following
example, we show how a generic model can be used for a login form:

<?php

class LoginForm extends \yii\base\Model

{

public $username;

public $password;

public function rules()

{

return [

// define validation rules here

];

}

}

In the controller, we will pass an instance of that model to the view, wherein
the yii\widgets\ActiveForm widget is used to display the form:

<?php

321

322 CHAPTER 7. GETTING DATA FROM USERS

use yii\helpers\Html;

use yii\widgets\ActiveForm;

$form = ActiveForm::begin([

'id' => 'login-form',

'options' => ['class' => 'form-horizontal'],

]) ?>

<?= $form->field($model, 'username') ?>

<?= $form->field($model, 'password')->passwordInput() ?>

<div class="form-group">

<div class="col-lg-offset-1 col-lg-11">

<?= Html::submitButton('Login', ['class' => 'btn btn-primary'])

?>

</div>

</div>

<?php ActiveForm::end() ?>

Wrapping with begin() and end()

In the above code, yii\widgets\ActiveForm::begin() not only creates a
form instance, but also marks the beginning of the form. All of the con-
tent placed between yii\widgets\ActiveForm::begin() and yii\widgets

\ActiveForm::end() will be wrapped within the HTML <form> tag. As with
any widget, you can specify some options as to how the widget should be
con�gured by passing an array to the begin method. In this case, an extra
CSS class and identifying ID are passed to be used in the opening <form>

tag. For all available options, please refer to the API documentation of yii
\widgets\ActiveForm.

ActiveField .

In order to create a form element in the form, along with the element's la-
bel, and any applicable JavaScript validation, the yii\widgets\ActiveForm
::field() method is called, which returns an instance of yii\widgets

\ActiveField. When the result of this method is echoed directly, the result
is a regular (text) input. To customize the output, you can chain additional
methods of yii\widgets\ActiveField to this call:

// a password input

<?= $form->field($model, 'password')->passwordInput() ?>

// adding a hint and a customized label

<?= $form->field($model, 'username')->textInput()->hint('Please enter your

name')->label('Name') ?>

// creating a HTML5 email input element

<?= $form->field($model, 'email')->input('email') ?>

This will create all the <label>, <input> and other tags according to the yii

\widgets\ActiveField::$template de�ned by the form �eld. The name
of the input �eld is determined automatically from the model's yii\base

7.1. CREATING FORMS 323

\Model::formName() and the attribute name. For example, the name for the
input �eld for the username attribute in the above example will be LoginForm

[username]. This naming rule will result in an array of all attributes for the
login form to be available in $_POST['LoginForm'] on the server-side.

Tip: If you have only one model in a form and want to simplify
the input names you may skip the array part by overriding the
yii\base\Model::formName() method of the model to return
an empty string. This can be useful for �lter models used in the
GridView to create nicer URLs.

Specifying the attribute of the model can be done in more sophisticated ways.
For example when an attribute may take an array value when uploading
multiple �les or selecting multiple items you may specify it by appending []

to the attribute name:

// allow multiple files to be uploaded:

echo $form->field($model, 'uploadFile[]')->fileInput(['multiple'=>'multiple'

]);

// allow multiple items to be checked:

echo $form->field($model, 'items[]')->checkboxList(['a' => 'Item A', 'b' =>

'Item B', 'c' => 'Item C']);

Be careful when naming form elements such as submit buttons. According
to the jQuery documentation1 there are some reserved names that can cause
con�icts:

Forms and their child elements should not use input names or ids
that con�ict with properties of a form, such as submit, length, or
method. Name con�icts can cause confusing failures. For a com-
plete list of rules and to check your markup for these problems,
see DOMLint2.

Additional HTML tags can be added to the form using plain HTML or using
the methods from the yii\helpers\Html-helper class like it is done in the
above example with yii\helpers\Html::submitButton().

Tip: If you are using Twitter Bootstrap CSS in your application
you may want to use yii\bootstrap\ActiveForm instead of yii
\widgets\ActiveForm. The former extends from the latter and
uses Bootstrap-speci�c styles when generating form input �elds.

Tip: In order to style required �elds with asterisks, you can use
the following CSS:

1https://api.jquery.com/submit/
2http://kangax.github.io/domlint/

https://api.jquery.com/submit/
http://kangax.github.io/domlint/

324 CHAPTER 7. GETTING DATA FROM USERS

div.required label.control-label:after {

content: " *";

color: red;

}

7.1.2 Creating Lists

There are 3 types of lists:

• Dropdown lists
• Radio lists
• Checkbox lists

To create a list, you have to prepare the items. This can be done manually:

$items = [

1 => 'item 1',

2 => 'item 2'

]

or by retrieval from the DB:

$items = Category::find()

->select(['id', 'label'])

->indexBy('id')

->column();

These $items have to be processed by the di�erent list widgets. The value of
the form �eld (and the current active item) will be automatically set by the
current value of the $model`s attribute.

Creating a drop-down list We can use ActiveField \yii\widgets\ActiveField
::dropDownList() method to create a drop-down list:

/* @var $form yii\widgets\ActiveForm */

echo $form->field($model, 'category')->dropdownList([

1 => 'item 1',

2 => 'item 2'

],

['prompt'=>'Select Category']

);

Creating a radio list We can use ActiveField \yii\widgets\ActiveField
::radioList() method to create a radio list:

/* @var $form yii\widgets\ActiveForm */

echo $form->field($model, 'category')->radioList([

1 => 'radio 1',

2 => 'radio 2'

]);

7.1. CREATING FORMS 325

Creating a checkbox List We can use ActiveField \yii\widgets\ActiveField
::checkboxList() method to create a checkbox list:

/* @var $form yii\widgets\ActiveForm */

echo $form->field($model, 'category')->checkboxList([

1 => 'checkbox 1',

2 => 'checkbox 2'

]);

7.1.3 Working with Pjax

The yii\widgets\Pjax widget allows you to update a certain section of a
page instead of reloading the entire page. You can use it to update only the
form and replace its contents after the submission.

You can con�gure yii\widgets\Pjax::$formSelector to specify which
form submission may trigger pjax. If not set, all forms with data-pjax attrib-
ute within the enclosed content of Pjax will trigger pjax requests.

use yii\widgets\Pjax;

use yii\widgets\ActiveForm;

Pjax::begin([

// Pjax options

]);

$form = ActiveForm::begin([

'options' => ['data' => ['pjax' => true]],

// more ActiveForm options

]);

// ActiveForm content

ActiveForm::end();

Pjax::end();

Tip: Be careful with the links inside the yii\widgets\Pjax

widget since the response will also be rendered inside the widget.
To prevent this, use the data-pjax="0" HTML attribute.

Values in Submit Buttons and File Upload There are known issues
using jQuery.serializeArray() when dealing with �les3 and submit button
values4 which won't be solved and are instead deprecated in favor of the
FormData class introduced in HTML5.

That means the only o�cial support for �les and submit button values
with ajax or using the yii\widgets\Pjax widget depends on the browser
support5 for the FormData class.

3https://github.com/jquery/jquery/issues/2321
4https://github.com/jquery/jquery/issues/2321
5https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_

https://github.com/jquery/jquery/issues/2321
https://github.com/jquery/jquery/issues/2321
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility

326 CHAPTER 7. GETTING DATA FROM USERS

7.1.4 Further Reading

The next section Validating Input handles the validation of the submitted
form data on the server-side as well as ajax and client-side validation.

To read about more complex usage of forms, you may want to check out
the following sections:

• Collecting Tabular Input for collecting data for multiple models of the
same kind.

• Getting Data for Multiple Models for handling multiple di�erent mod-
els in the same form.

• Uploading Files on how to use forms for uploading �les.

7.2 Validating Input

As a rule of thumb, you should never trust the data received from end users
and should always validate it before putting it to good use.

Given a model populated with user inputs, you can validate the inputs by
calling the yii\base\Model::validate() method. The method will return
a boolean value indicating whether the validation succeeded or not. If not,
you may get the error messages from the yii\base\Model::errors property.
For example,

$model = new \app\models\ContactForm();

// populate model attributes with user inputs

$model->load(\Yii::$app->request->post());

// which is equivalent to the following:

// $model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {

// all inputs are valid

} else {

// validation failed: $errors is an array containing error messages

$errors = $model->errors;

}

7.2.1 Declaring Rules

To make validate() really work, you should declare validation rules for the
attributes you plan to validate. This should be done by overriding the yii

\base\Model::rules() method. The following example shows how the val-
idation rules for the ContactForm model are declared:

public function rules()

{

return [

// the name, email, subject and body attributes are required

compatibility

https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility

7.2. VALIDATING INPUT 327

[['name', 'email', 'subject', 'body'], 'required'],

// the email attribute should be a valid email address

['email', 'email'],

];

}

The yii\base\Model::rules()method should return an array of rules, each
of which is an array of the following format:

[

// required, specifies which attributes should be validated by this rule

.

// For a single attribute, you can use the attribute name directly

// without having it in an array

['attribute1', 'attribute2', ...],

// required, specifies the type of this rule.

// It can be a class name, validator alias, or a validation method name

'validator',

// optional, specifies in which scenario(s) this rule should be applied

// if not given, it means the rule applies to all scenarios

// You may also configure the "except" option if you want to apply the

rule

// to all scenarios except the listed ones

'on' => ['scenario1', 'scenario2', ...],

// optional, specifies additional configurations for the validator

object

'property1' => 'value1', 'property2' => 'value2', ...

]

For each rule you must specify at least which attributes the rule applies to
and what is the type of the rule. You can specify the rule type in one of the
following forms:

• the alias of a core validator, such as required, in, date, etc. Please refer
to the Core Validators for the complete list of core validators.

• the name of a validation method in the model class, or an anonymous
function. Please refer to the Inline Validators subsection for more
details.

• a fully quali�ed validator class name. Please refer to the Standalone
Validators subsection for more details.

A rule can be used to validate one or multiple attributes, and an attribute
may be validated by one or multiple rules. A rule may be applied in certain
scenarios only by specifying the on option. If you do not specify an on option,
it means the rule will be applied to all scenarios.

When the validate() method is called, it does the following steps to
perform validation:

1. Determine which attributes should be validated by getting the attrib-

328 CHAPTER 7. GETTING DATA FROM USERS

ute list from yii\base\Model::scenarios() using the current yii

\base\Model::scenario. These attributes are called active attributes.

2. Determine which validation rules should be used by getting the rule list
from yii\base\Model::rules() using the current yii\base\Model::
scenario. These rules are called active rules.

3. Use each active rule to validate each active attribute which is associated
with the rule. The validation rules are evaluated in the order they are
listed.

According to the above validation steps, an attribute will be validated if and
only if it is an active attribute declared in scenarios() and is associated with
one or multiple active rules declared in rules().

Note: It is handy to give names to rules i.e.

public function rules()

{

return [

// ...

'password' => [['password'], 'string', 'max' => 60],

];

}

You can use it in a child model:

public function rules()

{

$rules = parent::rules();

unset($rules['password']);

return $rules;

}

Customizing Error Messages

Most validators have default error messages that will be added to the model
being validated when its attributes fail the validation. For example, the yii
\validators\RequiredValidator validator will add a message �Username
cannot be blank.� to a model when the username attribute fails the rule using
this validator.

You can customize the error message of a rule by specifying the message

property when declaring the rule, like the following,

public function rules()

{

return [

['username', 'required', 'message' => 'Please choose a username.'],

];

}

7.2. VALIDATING INPUT 329

Some validators may support additional error messages to more precisely de-
scribe di�erent causes of validation failures. For example, the yii\validators
\NumberValidator validator supports yii\validators\NumberValidator

::tooBig and yii\validators\NumberValidator::tooSmall to describe
the validation failure when the value being validated is too big and too
small, respectively. You may con�gure these error messages like con�guring
other properties of validators in a validation rule.

Validation Events

When yii\base\Model::validate() is called, it will call two methods that
you may override to customize the validation process:

• yii\base\Model::beforeValidate(): the default implementation will
trigger a yii\base\Model::EVENT_BEFORE_VALIDATE event. You may
either override this method or respond to this event to do some pre-
processing work (e.g. normalizing data inputs) before the validation
occurs. The method should return a boolean value indicating whether
the validation should proceed or not.

• yii\base\Model::afterValidate(): the default implementation will
trigger a yii\base\Model::EVENT_AFTER_VALIDATE event. You may
either override this method or respond to this event to do some post-
processing work after the validation is completed.

Conditional Validation

To validate attributes only when certain conditions apply, e.g. the validation
of one attribute depends on the value of another attribute you can use the
yii\validators\Validator::when property to de�ne such conditions. For
example,

['state', 'required', 'when' => function($model) {

return $model->country == 'USA';

}]

The yii\validators\Validator::when property takes a PHP callable with
the following signature:

/**

* @param Model $model the model being validated

* @param string $attribute the attribute being validated

* @return bool whether the rule should be applied

*/

function ($model, $attribute)

If you also need to support client-side conditional validation, you should con-
�gure the yii\validators\Validator::whenClient property which takes
a string representing a JavaScript function whose return value determines
whether to apply the rule or not. For example,

330 CHAPTER 7. GETTING DATA FROM USERS

['state', 'required', 'when' => function ($model) {

return $model->country == 'USA';

}, 'whenClient' => "function (attribute, value) {

return $('#country').val() == 'USA';

}"]

Data Filtering

User inputs often need to be �ltered or preprocessed. For example, you may
want to trim the spaces around the username input. You may use validation
rules to achieve this goal.

The following examples shows how to trim the spaces in the inputs and
turn empty inputs into nulls by using the trim and default core validators:

return [

[['username', 'email'], 'trim'],

[['username', 'email'], 'default'],

];

You may also use the more general �lter validator to perform more complex
data �ltering.

As you can see, these validation rules do not really validate the inputs.
Instead, they will process the values and save them back to the attributes
being validated.

Handling Empty Inputs

When input data are submitted from HTML forms, you often need to assign
some default values to the inputs if they are empty. You can do so by using
the default validator. For example,

return [

// set "username" and "email" as null if they are empty

[['username', 'email'], 'default'],

// set "level" to be 1 if it is empty

['level', 'default', 'value' => 1],

];

By default, an input is considered empty if its value is an empty string, an
empty array or a null. You may customize the default empty detection logic
by con�guring the yii\validators\Validator::isEmpty property with a
PHP callable. For example,

['agree', 'required', 'isEmpty' => function ($value) {

return empty($value);

}]

Note: Most validators do not handle empty inputs if their yii
\validators\Validator::skipOnEmpty property takes the de-
fault value true. They will simply be skipped during validation

7.2. VALIDATING INPUT 331

if their associated attributes receive empty inputs. Among the
core validators, only the captcha, default, filter, required, and
trim validators will handle empty inputs.

7.2.2 Ad Hoc Validation

Sometimes you need to do ad hoc validation for values that are not bound
to any model.

If you only need to perform one type of validation (e.g. validating email
addresses), you may call the yii\validators\Validator::validate()method
of the desired validator, like the following:

$email = 'test@example.com';

$validator = new yii\validators\EmailValidator();

if ($validator->validate($email, $error)) {

echo 'Email is valid.';

} else {

echo $error;

}

Note: Not all validators support this type of validation. An
example is the unique core validator which is designed to work
with a model only.

If you need to perform multiple validations against several values, you can
use yii\base\DynamicModel which supports declaring both attributes and
rules on the �y. Its usage is like the following:

public function actionSearch($name, $email)

{

$model = DynamicModel::validateData(compact('name', 'email'), [

[['name', 'email'], 'string', 'max' => 128],

['email', 'email'],

]);

if ($model->hasErrors()) {

// validation fails

} else {

// validation succeeds

}

}

The yii\base\DynamicModel::validateData()method creates an instance
of DynamicModel, de�nes the attributes using the given data (name and email in
this example), and then calls yii\base\Model::validate() with the given
rules.

Alternatively, you may use the following more �classic� syntax to perform
ad hoc data validation:

332 CHAPTER 7. GETTING DATA FROM USERS

public function actionSearch($name, $email)

{

$model = new DynamicModel(compact('name', 'email'));

$model->addRule(['name', 'email'], 'string', ['max' => 128])

->addRule('email', 'email')

->validate();

if ($model->hasErrors()) {

// validation fails

} else {

// validation succeeds

}

}

After validation, you can check if the validation succeeded or not by call-
ing the yii\base\DynamicModel::hasErrors() method, and then get the
validation errors from the yii\base\DynamicModel::errors property, like
you do with a normal model. You may also access the dynamic attributes
de�ned through the model instance, e.g., $model->name and $model->email.

7.2.3 Creating Validators

Besides using the core validators included in the Yii releases, you may also
create your own validators. You may create inline validators or standalone
validators.

Inline Validators

An inline validator is one de�ned in terms of a model method or an anonym-
ous function. The signature of the method/function is:

/**

* @param string $attribute the attribute currently being validated

* @param mixed $params the value of the "params" given in the rule

* @param \yii\validators\InlineValidator related InlineValidator instance.

* This parameter is available since version 2.0.11.

*/

function ($attribute, $params, $validator)

If an attribute fails the validation, the method/function should call yii\base
\Model::addError() to save the error message in the model so that it can
be retrieved back later to present to end users.

Below are some examples:

use yii\base\Model;

class MyForm extends Model

{

public $country;

public $token;

public function rules()

7.2. VALIDATING INPUT 333

{

return [

// an inline validator defined as the model method

validateCountry()

['country', 'validateCountry'],

// an inline validator defined as an anonymous function

['token', function ($attribute, $params, $validator) {

if (!ctype_alnum($this->$attribute)) {

$this->addError($attribute, 'The token must contain

letters or digits.');

}

}],

];

}

public function validateCountry($attribute, $params, $validator)

{

if (!in_array($this->$attribute, ['USA', 'Web'])) {

$this->addError($attribute, 'The country must be either "USA" or

"Web".');

}

}

}

Note: Since version 2.0.11 you can use yii\validators\InlineValidator
::addError() for adding errors instead. That way the error mes-
sage can be formatted using yii\i18n\I18N::format() right
away. Use {attribute} and {value} in the error message to refer
to an attribute label (no need to get it manually) and attribute
value accordingly:

$validator->addError($this, $attribute, 'The value "{value}" is

not acceptable for {attribute}.');

Note: By default, inline validators will not be applied if their
associated attributes receive empty inputs or if they have already
failed some validation rules. If you want to make sure a rule is al-
ways applied, you may con�gure the yii\validators\Validator
::skipOnEmpty and/or yii\validators\Validator::skipOnError
properties to be false in the rule declarations. For example:

[

['country', 'validateCountry', 'skipOnEmpty' => false, '

skipOnError' => false],

]

Standalone Validators

A standalone validator is a class extending yii\validators\Validator or
its child class. You may implement its validation logic by overriding the

334 CHAPTER 7. GETTING DATA FROM USERS

yii\validators\Validator::validateAttribute() method. If an attrib-
ute fails the validation, call yii\base\Model::addError() to save the error
message in the model, like you do with inline validators.

For example the inline validator above could be moved into new [[com-
ponents/validators/CountryValidator]] class.

namespace app\components;

use yii\validators\Validator;

class CountryValidator extends Validator

{

public function validateAttribute($model, $attribute)

{

if (!in_array($model->$attribute, ['USA', 'Web'])) {

$this->addError($model, $attribute, 'The country must be either

"USA" or "Web".');

}

}

}

If you want your validator to support validating a value without a model,
you should also override yii\validators\Validator::validate(). You
may also override yii\validators\Validator::validateValue() instead
of validateAttribute() and validate() because by default the latter two meth-
ods are implemented by calling validateValue().

Below is an example of how you could use the above validator class within
your model.

namespace app\models;

use Yii;

use yii\base\Model;

use app\components\validators\CountryValidator;

class EntryForm extends Model

{

public $name;

public $email;

public $country;

public function rules()

{

return [

[['name', 'email'], 'required'],

['country', CountryValidator::className()],

['email', 'email'],

];

}

}

7.2. VALIDATING INPUT 335

7.2.4 Multiple Attributes Validation

Sometimes validators involve multiple attributes. Consider the following
form:

class MigrationForm extends \yii\base\Model

{

/**

* Minimal funds amount for one adult person

*/

const MIN_ADULT_FUNDS = 3000;

/**

* Minimal funds amount for one child

*/

const MIN_CHILD_FUNDS = 1500;

public $personalSalary;

public $spouseSalary;

public $childrenCount;

public $description;

public function rules()

{

return [

[['personalSalary', 'description'], 'required'],

[['personalSalary', 'spouseSalary'], 'integer', 'min' => self::

MIN_ADULT_FUNDS],

['childrenCount', 'integer', 'min' => 0, 'max' => 5],

[['spouseSalary', 'childrenCount'], 'default', 'value' => 0],

['description', 'string'],

];

}

}

Creating validator

Let's say we need to check if the family income is enough for children. We
can create inline validator validateChildrenFunds for that which will run only
when childrenCount is more than 0.

Note that we can't use all validated attributes (['personalSalary', 'spouseSalary

', 'childrenCount']) when attaching validator. This is because the same val-
idator will run for each attribute (3 times in total) and we only need to run
it once for the whole attribute set.

You can use any of these attributes instead (or use what you think is the
most relevant):

['childrenCount', 'validateChildrenFunds', 'when' => function ($model) {

return $model->childrenCount > 0;

}],

Implementation of validateChildrenFunds can be like this:

336 CHAPTER 7. GETTING DATA FROM USERS

public function validateChildrenFunds($attribute, $params)

{

$totalSalary = $this->personalSalary + $this->spouseSalary;

// Double the minimal adult funds if spouse salary is specified

$minAdultFunds = $this->spouseSalary ? self::MIN_ADULT_FUNDS * 2 : self

::MIN_ADULT_FUNDS;

$childFunds = $totalSalary - $minAdultFunds;

if ($childFunds / $this->childrenCount < self::MIN_CHILD_FUNDS) {

$this->addError('childrenCount', 'Your salary is not enough for

children.');

}

}

You can ignore $attribute parameter because validation is not related to just
one attribute.

Adding errors

Adding error in case of multiple attributes can vary depending on desired
form design:

• Select the most relevant �eld in your opinion and add error to it's
attribute:

$this->addError('childrenCount', 'Your salary is not enough for children.');

• Select multiple important relevant attributes or all attributes and add
the same error message to them. We can store message in separate
variable before passing it to addError to keep code DRY.

$message = 'Your salary is not enough for children.';

$this->addError('personalSalary', $message);

$this->addError('wifeSalary', $message);

$this->addError('childrenCount', $message);

Or use a loop:

$attributes = ['personalSalary, 'wifeSalary', 'childrenCount'];

foreach ($attributes as $attribute) {

$this->addError($attribute, 'Your salary is not enough for children.');

}

• Add a common error (not related to particular attribute). We can use
the not existing attribute name for adding error, for example *, because
attribute existence is not checked at that point.

$this->addError('*', 'Your salary is not enough for children.');

As a result, we will not see error message near form �elds. To display it, we
can include the error summary in view:

<?= $form->errorSummary($model) ?>

7.2. VALIDATING INPUT 337

Note: Creating validator which validates multiple attributes at
once is well described in the community cookbook6.

7.2.5 Client-Side Validation

Client-side validation based on JavaScript is desirable when end users provide
inputs via HTML forms, because it allows users to �nd out input errors faster
and thus provides a better user experience. You may use or implement a
validator that supports client-side validation in addition to server-side val-
idation.

Info: While client-side validation is desirable, it is not a must.
Its main purpose is to provide users with a better experience.
Similar to input data coming from end users, you should never
trust client-side validation. For this reason, you should always
perform server-side validation by calling yii\base\Model::validate(),
as described in the previous subsections.

Using Client-Side Validation

Many core validators support client-side validation out-of-the-box. All you
need to do is just use yii\widgets\ActiveForm to build your HTML forms.
For example, LoginForm below declares two rules: one uses the required core
validator which is supported on both client and server-sides; the other uses
the validatePassword inline validator which is only supported on the server
side.

namespace app\models;

use yii\base\Model;

use app\models\User;

class LoginForm extends Model

{

public $username;

public $password;

public function rules()

{

return [

// username and password are both required

[['username', 'password'], 'required'],

// password is validated by validatePassword()

['password', 'validatePassword'],

];

}

6https://github.com/samdark/yii2-cookbook/blob/master/book/

forms-validator-multiple-attributes.md

https://github.com/samdark/yii2-cookbook/blob/master/book/forms-validator-multiple-attributes.md
https://github.com/samdark/yii2-cookbook/blob/master/book/forms-validator-multiple-attributes.md

338 CHAPTER 7. GETTING DATA FROM USERS

public function validatePassword()

{

$user = User::findByUsername($this->username);

if (!$user || !$user->validatePassword($this->password)) {

$this->addError('password', 'Incorrect username or password.');

}

}

}

The HTML form built by the following code contains two input �elds username
and password. If you submit the form without entering anything, you will
�nd the error messages requiring you to enter something appear right away
without any communication with the server.

<?php $form = yii\widgets\ActiveForm::begin(); ?>

<?= $form->field($model, 'username') ?>

<?= $form->field($model, 'password')->passwordInput() ?>

<?= Html::submitButton('Login') ?>

<?php yii\widgets\ActiveForm::end(); ?>

Behind the scene, yii\widgets\ActiveForm will read the validation rules
declared in the model and generate appropriate JavaScript code for validators
that support client-side validation. When a user changes the value of an
input �eld or submit the form, the client-side validation JavaScript will be
triggered.

If you want to turn o� client-side validation completely, you may con�g-
ure the yii\widgets\ActiveForm::enableClientValidation property to
be false. You may also turn o� client-side validation of individual input �elds
by con�guring their yii\widgets\ActiveField::enableClientValidation
property to be false. When enableClientValidation is con�gured at both the
input �eld level and the form level, the former will take precedence.

Info: Since version 2.0.11 all validators extending from yii

\validators\Validator receive client-side options from separ-
ate method - yii\validators\Validator::getClientOptions().
You can use it:

• if you want to implement your own custom client-side valida-
tion but leave the synchronization with server-side validator
options;

• to extend or customize to �t your speci�c needs:

public function getClientOptions($model, $attribute)

{

$options = parent::getClientOptions($model, $attribute);

// Modify $options here

return $options;

}

7.2. VALIDATING INPUT 339

Implementing Client-Side Validation

To create a validator that supports client-side validation, you should imple-
ment the yii\validators\Validator::clientValidateAttribute()method
which returns a piece of JavaScript code that performs the validation on the
client-side. Within the JavaScript code, you may use the following prede�ned
variables:

• attribute: the name of the attribute being validated.
• value: the value being validated.
• messages: an array used to hold the validation error messages for the
attribute.

• deferred: an array which deferred objects can be pushed into (explained
in the next subsection).

In the following example, we create a StatusValidator which validates if an
input is a valid status input against the existing status data. The validator
supports both server-side and client-side validation.

namespace app\components;

use yii\validators\Validator;

use app\models\Status;

class StatusValidator extends Validator

{

public function init()

{

parent::init();

$this->message = 'Invalid status input.';

}

public function validateAttribute($model, $attribute)

{

$value = $model->$attribute;

if (!Status::find()->where(['id' => $value])->exists()) {

$model->addError($attribute, $this->message);

}

}

public function clientValidateAttribute($model, $attribute, $view)

{

$statuses = json_encode(Status::find()->select('id')->asArray()->

column());

$message = json_encode($this->message, JSON_UNESCAPED_SLASHES |

JSON_UNESCAPED_UNICODE);

return <<<JS

if ($.inArray(value, $statuses) === -1) {

messages.push($message);

}

JS;

}

}

340 CHAPTER 7. GETTING DATA FROM USERS

Tip: The above code is given mainly to demonstrate how to sup-
port client-side validation. In practice, you may use the in core
validator to achieve the same goal. You may write the validation
rule like the following:

[

['status', 'in', 'range' => Status::find()->select('id')->

asArray()->column()],

]

Tip: If you need to work with client validation manually i.e. dy-
namically add �elds or do some custom UI logic, refer to Working
with ActiveForm via JavaScript7 in Yii 2.0 Cookbook.

Deferred Validation

If you need to perform asynchronous client-side validation, you can create
Deferred objects8. For example, to perform a custom AJAX validation, you
can use the following code:

public function clientValidateAttribute($model, $attribute, $view)

{

return <<<JS

deferred.push($.get("/check", {value: value}).done(function(data) {

if ('' !== data) {

messages.push(data);

}

}));

JS;

}

In the above, the deferred variable is provided by Yii, which is an array
of Deferred objects. The $.get() jQuery method creates a Deferred object
which is pushed to the deferred array.

You can also explicitly create a Deferred object and call its resolve()

method when the asynchronous callback is hit. The following example shows
how to validate the dimensions of an uploaded image �le on the client-side.

public function clientValidateAttribute($model, $attribute, $view)

{

return <<<JS

var def = $.Deferred();

var img = new Image();

img.onload = function() {

if (this.width > 150) {

messages.push('Image too wide!!');

}

def.resolve();

7https://github.com/samdark/yii2-cookbook/blob/master/book/

forms-activeform-js.md
8http://api.jquery.com/category/deferred-object/

https://github.com/samdark/yii2-cookbook/blob/master/book/forms-activeform-js.md
https://github.com/samdark/yii2-cookbook/blob/master/book/forms-activeform-js.md
http://api.jquery.com/category/deferred-object/

7.2. VALIDATING INPUT 341

}

var reader = new FileReader();

reader.onloadend = function() {

img.src = reader.result;

}

reader.readAsDataURL(file);

deferred.push(def);

JS;

}

Note: The resolve() method must be called after the attribute
has been validated. Otherwise the main form validation will not
complete.

For simplicity, the deferred array is equipped with a shortcut method add()

which automatically creates a Deferred object and adds it to the deferred

array. Using this method, you can simplify the above example as follows,

public function clientValidateAttribute($model, $attribute, $view)

{

return <<<JS

deferred.add(function(def) {

var img = new Image();

img.onload = function() {

if (this.width > 150) {

messages.push('Image too wide!!');

}

def.resolve();

}

var reader = new FileReader();

reader.onloadend = function() {

img.src = reader.result;

}

reader.readAsDataURL(file);

});

JS;

}

AJAX Validation

Some validations can only be done on the server-side, because only the server
has the necessary information. For example, to validate if a username is
unique or not, it is necessary to check the user table on the server-side.
You can use AJAX-based validation in this case. It will trigger an AJAX
request in the background to validate the input while keeping the same user
experience as the regular client-side validation.

To enable AJAX validation for a single input �eld, con�gure the yii

\widgets\ActiveField::enableAjaxValidation property of that �eld to
be true and specify a unique form id:

342 CHAPTER 7. GETTING DATA FROM USERS

use yii\widgets\ActiveForm;

$form = ActiveForm::begin([

'id' => 'registration-form',

]);

echo $form->field($model, 'username', ['enableAjaxValidation' => true]);

// ...

ActiveForm::end();

To enable AJAX validation for the whole form, con�gure yii\widgets\ActiveForm
::enableAjaxValidation to be true at the form level:

$form = ActiveForm::begin([

'id' => 'contact-form',

'enableAjaxValidation' => true,

]);

Note: When the enableAjaxValidation property is con�gured at
both the input �eld level and the form level, the former will take
precedence.

You also need to prepare the server so that it can handle the AJAX validation
requests. This can be achieved by a code snippet like the following in the
controller actions:

if (Yii::$app->request->isAjax && $model->load(Yii::$app->request->post()))

{

Yii::$app->response->format = Response::FORMAT_JSON;

return ActiveForm::validate($model);

}

The above code will check whether the current request is an AJAX. If yes,
it will respond to this request by running the validation and returning the
errors in JSON format.

Info: You can also use Deferred Validation to perform AJAX
validation. However, the AJAX validation feature described here
is more systematic and requires less coding e�ort.

When both enableClientValidation and enableAjaxValidation are set to true,
AJAX validation request will be triggered only after the successful client
validation.

7.3 Uploading Files

Uploading �les in Yii is usually done with the help of yii\web\UploadedFile
which encapsulates each uploaded �le as an UploadedFile object. Combined
with yii\widgets\ActiveForm and models, you can easily implement a se-
cure �le uploading mechanism.

7.3. UPLOADING FILES 343

7.3.1 Creating Models

Like working with plain text inputs, to upload a single �le you would create
a model class and use an attribute of the model to keep the uploaded �le
instance. You should also declare a validation rule to validate the �le upload.
For example,

namespace app\models;

use yii\base\Model;

use yii\web\UploadedFile;

class UploadForm extends Model

{

/**

* @var UploadedFile

*/

public $imageFile;

public function rules()

{

return [

[['imageFile'], 'file', 'skipOnEmpty' => false, 'extensions' =>

'png, jpg'],

];

}

public function upload()

{

if ($this->validate()) {

$this->imageFile->saveAs('uploads/' . $this->imageFile->baseName

. '.' . $this->imageFile->extension);

return true;

} else {

return false;

}

}

}

In the code above, the imageFile attribute is used to keep the uploaded
�le instance. It is associated with a file validation rule which uses yii

\validators\FileValidator to ensure a �le with extension name png or
jpg is uploaded. The upload() method will perform the validation and save
the uploaded �le on the server.

The file validator allows you to check �le extensions, size, MIME type,
etc. Please refer to the Core Validators section for more details.

Tip: If you are uploading an image, you may consider using
the image validator instead. The image validator is implemented
via yii\validators\ImageValidator which veri�es if an attrib-
ute has received a valid image that can be then either saved or

344 CHAPTER 7. GETTING DATA FROM USERS

processed using the Imagine Extension9.

7.3.2 Rendering File Input

Next, create a �le input in a view:

<?php

use yii\widgets\ActiveForm;

?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-

data']]) ?>

<?= $form->field($model, 'imageFile')->fileInput() ?>

<button>Submit</button>

<?php ActiveForm::end() ?>

It is important to remember that you add the enctype option to the form so
that the �le can be properly uploaded. The fileInput() call will render a
<input type="file"> tag which will allow users to select a �le to upload.

Tip: since version 2.0.8, yii\web\widgets\ActiveField::fileInput
adds enctype option to the form automatically when �le input
�eld is used.

7.3.3 Wiring Up

Now in a controller action, write the code to wire up the model and the view
to implement �le uploading:

namespace app\controllers;

use Yii;

use yii\web\Controller;

use app\models\UploadForm;

use yii\web\UploadedFile;

class SiteController extends Controller

{

public function actionUpload()

{

$model = new UploadForm();

if (Yii::$app->request->isPost) {

$model->imageFile = UploadedFile::getInstance($model, 'imageFile

');

if ($model->upload()) {

// file is uploaded successfully

return;

9https://github.com/yiisoft/yii2-imagine

https://github.com/yiisoft/yii2-imagine

7.3. UPLOADING FILES 345

}

}

return $this->render('upload', ['model' => $model]);

}

}

In the above code, when the form is submitted, the yii\web\UploadedFile
::getInstance() method is called to represent the uploaded �le as an
UploadedFile instance. We then rely on the model validation to make sure
the uploaded �le is valid and save the �le on the server.

7.3.4 Uploading Multiple Files

You can also upload multiple �les at once, with some adjustments to the
code listed in the previous subsections.

First you should adjust the model class by adding the maxFiles option
in the file validation rule to limit the maximum number of �les allowed
to upload. Setting maxFiles to 0 means there is no limit on the number of
�les that can be uploaded simultaneously. The maximum number of �les
allowed to be uploaded simultaneously is also limited with PHP directive
max_file_uploads10, which defaults to 20. The upload() method should also
be updated to save the uploaded �les one by one.

namespace app\models;

use yii\base\Model;

use yii\web\UploadedFile;

class UploadForm extends Model

{

/**

* @var UploadedFile[]

*/

public $imageFiles;

public function rules()

{

return [

[['imageFiles'], 'file', 'skipOnEmpty' => false, 'extensions' =>

'png, jpg', 'maxFiles' => 4],

];

}

public function upload()

{

if ($this->validate()) {

foreach ($this->imageFiles as $file) {

$file->saveAs('uploads/' . $file->baseName . '.' . $file->

extension);

10http://php.net/manual/en/ini.core.php#ini.max-file-uploads

http://php.net/manual/en/ini.core.php#ini.max-file-uploads

346 CHAPTER 7. GETTING DATA FROM USERS

}

return true;

} else {

return false;

}

}

}

In the view �le, you should add the multiple option to the fileInput() call
so that the �le upload �eld can receive multiple �les:

<?php

use yii\widgets\ActiveForm;

?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-

data']]) ?>

<?= $form->field($model, 'imageFiles[]')->fileInput(['multiple' => true,

'accept' => 'image/*']) ?>

<button>Submit</button>

<?php ActiveForm::end() ?>

And �nally in the controller action, you should call UploadedFile::getInstances
() instead of UploadedFile::getInstance() to assign an array of UploadedFile

instances to UploadForm::imageFiles.

namespace app\controllers;

use Yii;

use yii\web\Controller;

use app\models\UploadForm;

use yii\web\UploadedFile;

class SiteController extends Controller

{

public function actionUpload()

{

$model = new UploadForm();

if (Yii::$app->request->isPost) {

$model->imageFiles = UploadedFile::getInstances($model, '

imageFiles');

if ($model->upload()) {

// file is uploaded successfully

return;

}

}

return $this->render('upload', ['model' => $model]);

}

}

7.4. COLLECTING TABULAR INPUT 347

7.4 Collecting tabular input

Sometimes you need to handle multiple models of the same kind in a single
form. For example, multiple settings, where each setting is stored as a name-
value pair and is represented by a Setting active record model. This kind of
form is also often referred to as �tabular input�. In contrast to this, handling
di�erent models of di�erent kind, is handled in the section Complex Forms
with Multiple Models.

The following shows how to implement tabular input with Yii.

There are three di�erent situations to cover, which have to be handled
slightly di�erent:

• Updating a �xed set of records from the database
• Creating a dynamic set of new records
• Updating, creating and deleting of records on one page

In contrast to the single model forms explained before, we are working with
an array of models now. This array is passed to the view to display the input
�elds for each model in a table like style and we will use helper methods of
yii\base\Model that allow loading and validating multiple models at once:

• yii\base\Model::loadMultiple() load post data into an array of
models.

• yii\base\Model::validateMultiple() validates an array of models.

Updating a �xed set of records

Let's start with the controller action:

<?php

namespace app\controllers;

use Yii;

use yii\base\Model;

use yii\web\Controller;

use app\models\Setting;

class SettingsController extends Controller

{

// ...

public function actionUpdate()

{

$settings = Setting::find()->indexBy('id')->all();

if (Model::loadMultiple($settings, Yii::$app->request->post()) &&

Model::validateMultiple($settings)) {

foreach ($settings as $setting) {

$setting->save(false);

}

return $this->redirect('index');

348 CHAPTER 7. GETTING DATA FROM USERS

}

return $this->render('update', ['settings' => $settings]);

}

}

In the code above we're using yii\db\ActiveQuery::indexBy() when re-
trieving models from the database to populate an array indexed by models
primary keys. These will be later used to identify form �elds. yii\base

\Model::loadMultiple() �lls multiple models with the form data coming
from POST and yii\base\Model::validateMultiple() validates all mod-
els at once. As we have validated our models before, using validateMultiple(),
we're now passing false as a parameter to yii\db\ActiveRecord::save()

to not run validation twice.
Now the form that's in update view:

<?php

use yii\helpers\Html;

use yii\widgets\ActiveForm;

$form = ActiveForm::begin();

foreach ($settings as $index => $setting) {

echo $form->field($setting, "[$index]value")->label($setting->name);

}

ActiveForm::end();

Here for each setting we are rendering name and an input with a value. It is
important to add a proper index to input name since that is how yii\base

\Model::loadMultiple() determines which model to �ll with which values.

Creating a dynamic set of new records

Creating new records is similar to updating, except the part, where we in-
stantiate the models:

public function actionCreate()

{

$count = count(Yii::$app->request->post('Setting', []));

$settings = [new Setting()];

for($i = 1; $i < $count; $i++) {

$settings[] = new Setting();

}

// ...

}

Here we create an initial $settings array containing one model by default so
that always at least one text �eld will be visible in the view. Additionally
we add more models for each line of input we may have received.

In the view you can use javascript to add new input lines dynamically.

7.5. GETTING DATA FOR MULTIPLE MODELS 349

Combining Update, Create and Delete on one page

Note: This section is under development.

It has no content yet.

TBD

7.5 Getting Data for Multiple Models

When dealing with some complex data, it is possible that you may need
to use multiple di�erent models to collect the user input. For example,
assuming the user login information is stored in the user table while the user
pro�le information is stored in the profile table, you may want to collect the
input data about a user through a User model and a Profile model. With
the Yii model and form support, you can solve this problem in a way that
is not much di�erent from handling a single model.

In the following, we will show how you can create a form that would
allow you to collect data for both User and Profile models.

First, the controller action for collecting the user and pro�le data can be
written as follows,

namespace app\controllers;

use Yii;

use yii\base\Model;

use yii\web\Controller;

use yii\web\NotFoundHttpException;

use app\models\User;

use app\models\Profile;

class UserController extends Controller

{

public function actionUpdate($id)

{

$user = User::findOne($id);

if (!$user) {

throw new NotFoundHttpException("The user was not found.");

}

$profile = Profile::findOne($user->profile_id);

if (!$profile) {

throw new NotFoundHttpException("The user has no profile.");

}

$user->scenario = 'update';

$profile->scenario = 'update';

if ($user->load(Yii::$app->request->post()) && $profile->load(Yii::

$app->request->post())) {

350 CHAPTER 7. GETTING DATA FROM USERS

$isValid = $user->validate();

$isValid = $profile->validate() && $isValid;

if ($isValid) {

$user->save(false);

$profile->save(false);

return $this->redirect(['user/view', 'id' => $id]);

}

}

return $this->render('update', [

'user' => $user,

'profile' => $profile,

]);

}

}

In the update action, we �rst load the $user and $profilemodels to be updated
from the database. We then call yii\base\Model::load() to populate these
two models with the user input. If successful we will validate the two models
and save them. Otherwise we will render the update view which has the
following content:

<?php

use yii\helpers\Html;

use yii\widgets\ActiveForm;

$form = ActiveForm::begin([

'id' => 'user-update-form',

'options' => ['class' => 'form-horizontal'],

]) ?>

<?= $form->field($user, 'username') ?>

...other input fields...

<?= $form->field($profile, 'website') ?>

<?= Html::submitButton('Update', ['class' => 'btn btn-primary']) ?>

<?php ActiveForm::end() ?>

As you can see, in the update view you would render input �elds using two
models $user and $profile.

Chapter 8

Displaying Data

8.1 Data Formatting

To display data in a more readable format for users, you may format them
using the formatter application component. By default the formatter is imple-
mented by yii\i18n\Formatter which provides a set of methods to format
data as date/time, numbers, currencies, and other commonly used formats.
You can use the formatter like the following,

$formatter = \Yii::$app->formatter;

// output: January 1, 2014

echo $formatter->asDate('2014-01-01', 'long');

// output: 12.50%

echo $formatter->asPercent(0.125, 2);

// output: cebe@example.com

echo $formatter->asEmail('cebe@example.com');

// output: Yes

echo $formatter->asBoolean(true);

// it also handles display of null values:

// output: (not set)

echo $formatter->asDate(null);

As you can see, all these methods are named as asXyz(), where Xyz stands for
a supported format. Alternatively, you may format data using the generic
method yii\i18n\Formatter::format(), which allows you to control the
desired format programmatically and is commonly used by widgets like yii
\grid\GridView and yii\widgets\DetailView. For example,

// output: January 1, 2014

echo Yii::$app->formatter->format('2014-01-01', 'date');

// you can also use an array to specify parameters for the format method:

351

352 CHAPTER 8. DISPLAYING DATA

// `2` is the value for the $decimals parameter of the asPercent()-method.

// output: 12.50%

echo Yii::$app->formatter->format(0.125, ['percent', 2]);

Note: The formatter component is designed to format values
to be displayed for the end user. If you want to convert user
input into machine readable format, or just format a date in a
machine readable format, the formatter is not the right tool for
that. To convert user input for date and number values you
may use yii\validators\DateValidator and yii\validators

\NumberValidator respectively. For simple conversion between
machine readable date and time formats, the PHP date()1-function
is enough.

8.1.1 Con�guring Formatter

You may customize the formatting rules by con�guring the formatter com-
ponent in the application con�guration. For example,

return [

'components' => [

'formatter' => [

'dateFormat' => 'dd.MM.yyyy',

'decimalSeparator' => ',',

'thousandSeparator' => ' ',

'currencyCode' => 'EUR',

],

],

];

Please refer to yii\i18n\Formatter for the properties that may be con-
�gured.

8.1.2 Formatting Date and Time Values

The formatter supports the following output formats that are related with
date and time:

• yii\i18n\Formatter::asDate(): the value is formatted as a date,
e.g. January 01, 2014.

• yii\i18n\Formatter::asTime(): the value is formatted as a time,
e.g. 14:23.

• yii\i18n\Formatter::asDatetime(): the value is formatted as date
and time, e.g. January 01, 2014 14:23.

• yii\i18n\Formatter::asTimestamp(): the value is formatted as a
unix timestamp2, e.g. 1412609982.

1http://php.net/manual/en/function.date.php
2http://en.wikipedia.org/wiki/Unix_time

http://php.net/manual/en/function.date.php
http://en.wikipedia.org/wiki/Unix_time

8.1. DATA FORMATTING 353

• yii\i18n\Formatter::asRelativeTime(): the value is formatted as
the time interval between a date and now in human readable form e.g.
1 hour ago.

• yii\i18n\Formatter::asDuration(): the value is formatted as a dur-
ation in human readable format. e.g. 1 day, 2 minutes.

The default date and time formats used for the yii\i18n\Formatter::

asDate(), yii\i18n\Formatter::asTime(), and yii\i18n\Formatter::asDatetime()
methods can be customized globally by con�guring
yii\i18n\Formatter::dateFormat, yii\i18n\Formatter::timeFormat, and
yii\i18n\Formatter::datetimeFormat.

You can specify date and time formats using the ICU syntax3. You can
also use the PHP date() syntax4 with a pre�x php: to di�erentiate it from
ICU syntax. For example,

// ICU format

echo Yii::$app->formatter->asDate('now', 'yyyy-MM-dd'); // 2014-10-06

// PHP date()-format

echo Yii::$app->formatter->asDate('now', 'php:Y-m-d'); // 2014-10-06

When working with applications that need to support multiple languages,
you often need to specify di�erent date and time formats for di�erent locales.
To simplify this task, you may use format shortcuts (e.g. long, short), in-
stead. The formatter will turn a format shortcut into an appropriate format
according to the currently active yii\i18n\Formatter::locale. The fol-
lowing format shortcuts are supported (the examples assume en_GB is the
active locale):

• short: will output 06/10/2014 for date and 15:58 for time;
• medium: will output 6 Oct 2014 and 15:58:42;
• long: will output 6 October 2014 and 15:58:42 GMT;
• full: will output Monday, 6 October 2014 and 15:58:42 GMT.

Since version 2.0.7 it is also possible to format dates in di�erent calendar
systems. Please refer to the API documentation of the formatters yii\i18n
\Formatter::$calendar-property on how to set a di�erent calendar.

Time Zones

When formatting date and time values, Yii will convert them to the target
yii\i18n\Formatter::timeZone. The value being formatted is assumed to
be in UTC, unless a time zone is explicitly given or you have con�gured yii

\i18n\Formatter::defaultTimeZone.

In the following examples, we assume the target yii\i18n\Formatter::
timeZone is set as Europe/Berlin.

3http://userguide.icu-project.org/formatparse/datetime
4http://php.net/manual/en/function.date.php

http://userguide.icu-project.org/formatparse/datetime
http://php.net/manual/en/function.date.php

354 CHAPTER 8. DISPLAYING DATA

// formatting a UNIX timestamp as a time

echo Yii::$app->formatter->asTime(1412599260); // 14:41:00

// formatting a datetime string (in UTC) as a time

echo Yii::$app->formatter->asTime('2014-10-06 12:41:00'); // 14:41:00

// formatting a datetime string (in CEST) as a time

echo Yii::$app->formatter->asTime('2014-10-06 14:41:00 CEST'); // 14:41:00

Note: As time zones are subject to rules made by the govern-
ments around the world and may change frequently, it is likely
that you do not have the latest information in the time zone data-
base installed on your system. You may refer to the ICU manual5

for details on updating the time zone database. Please also read
Setting up your PHP environment for internationalization.

8.1.3 Formatting Numbers

The formatter supports the following output formats that are related with
numbers:

• yii\i18n\Formatter::asInteger(): the value is formatted as an in-
teger e.g. 42.

• yii\i18n\Formatter::asDecimal(): the value is formatted as a decimal
number considering decimal and thousand separators e.g. 2,542.123 or
2.542,123.

• yii\i18n\Formatter::asPercent(): the value is formatted as a per-
cent number e.g. 42%.

• yii\i18n\Formatter::asScientific(): the value is formatted as a
number in scienti�c format e.g. 4.2E4.

• yii\i18n\Formatter::asCurrency(): the value is formatted as a cur-
rency value e.g. £420.00. Note that for this function to work properly,
the locale needs to include a country part e.g. en_GB or en_US because
language only would be ambiguous in this case.

• yii\i18n\Formatter::asSize(): the value that is a number of bytes
is formatted as a human readable size e.g. 410 kibibytes.

• yii\i18n\Formatter::asShortSize(): is the short version of yii

\i18n\Formatter::asSize(), e.g. 410 KiB.
The format for number formatting can be adjusted using the yii\i18n

\Formatter::decimalSeparator and yii\i18n\Formatter::thousandSeparator,
both of which take default values according to the active yii\i18n\Formatter
::locale.

For more advanced con�guration, yii\i18n\Formatter::numberFormatterOptions
and yii\i18n\Formatter::numberFormatterTextOptions can be used to

5http://userguide.icu-project.org/datetime/timezone#

TOC-Updating-the-Time-Zone-Data

http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data
http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data

8.1. DATA FORMATTING 355

con�gure the NumberFormatter class6 used internally to implement the format-
ter. For example, to adjust the maximum and minimum value of fraction di-
gits, you can con�gure the yii\i18n\Formatter::numberFormatterOptions
property like the following:

'numberFormatterOptions' => [

NumberFormatter::MIN_FRACTION_DIGITS => 0,

NumberFormatter::MAX_FRACTION_DIGITS => 2,

]

8.1.4 Other Formats

Besides date/time and number formats, Yii also supports other commonly
used formats, including

• yii\i18n\Formatter::asRaw(): the value is outputted as is, this is
a pseudo-formatter that has no e�ect except that null values will be
formatted using nullDisplay.

• yii\i18n\Formatter::asText(): the value is HTML-encoded. This
is the default format used by the GridView DataColumn.

• yii\i18n\Formatter::asNtext(): the value is formatted as an HTML-
encoded plain text with newlines converted into line breaks.

• yii\i18n\Formatter::asParagraphs(): the value is formatted as HTML-
encoded text paragraphs wrapped into <p> tags.

• yii\i18n\Formatter::asHtml(): the value is puri�ed using HtmlPurifier
to avoid XSS attacks. You can pass additional options such as ['html'

, ['Attr.AllowedFrameTargets' => ['_blank']]].
• yii\i18n\Formatter::asEmail(): the value is formatted as a mailto

-link.
• yii\i18n\Formatter::asImage(): the value is formatted as an image
tag.

• yii\i18n\Formatter::asUrl(): the value is formatted as a hyperlink.
• yii\i18n\Formatter::asBoolean(): the value is formatted as a boolean.
By default true is rendered as Yes and false as No, translated to the
current application language. You can adjust this by con�guring the
yii\i18n\Formatter::booleanFormat property.

8.1.5 Null Values

Null values are specially formatted. Instead of displaying an empty string,
the formatter will convert it into a preset string which defaults to (not set)

translated into the current application language. You can con�gure the yii
\i18n\Formatter::nullDisplay property to customize this string.

6http://php.net/manual/en/class.numberformatter.php

http://php.net/manual/en/class.numberformatter.php

356 CHAPTER 8. DISPLAYING DATA

8.1.6 Localizing Data Format

As aforementioned, the formatter may use the currently active yii\i18n

\Formatter::locale to determine how to format a value that is suitable
in the target country/region. For example, the same date value may be
formatted di�erently for di�erent locales:

Yii::$app->formatter->locale = 'en-US';

echo Yii::$app->formatter->asDate('2014-01-01'); // output: January 1, 2014

Yii::$app->formatter->locale = 'de-DE';

echo Yii::$app->formatter->asDate('2014-01-01'); // output: 1. Januar 2014

Yii::$app->formatter->locale = 'ru-RU';

echo Yii::$app->formatter->asDate('2014-01-01'); // output: 1 ÿíâàðÿ 2014 ã.

By default, the currently active yii\i18n\Formatter::locale is determ-
ined by the value of yii\base\Application::language. You may override
it by setting the yii\i18n\Formatter::locale property explicitly.

Note: The Yii formatter relies on the PHP intl extension7 to
support localized data formatting. Because di�erent versions of
the ICU library compiled with PHP may cause di�erent format-
ting results, it is recommended that you use the same ICU ver-
sion for all your environments. For more details, please refer to
Setting up your PHP environment for internationalization.

If the intl extension is not installed, the data will not be localized.

Note that for date values that are before year 1901 or after 2038,
they will not be localized on 32-bit systems, even if the intl ex-
tension is installed. This is because in this case ICU is using
32-bit UNIX timestamps to date values.

8.2 Pagination

When there are too much data to be displayed on a single page, a common
strategy is to display them in multiple pages and on each page only display
a small portion of the data. This strategy is known as pagination.

Yii uses a yii\data\Pagination object to represent the information
about a pagination scheme. In particular,

• yii\data\Pagination::$totalCount speci�es the total number of data
items. Note that this is usually much more than the number of data
items needed to display on a single page.

• yii\data\Pagination::$pageSize speci�es how many data items each
page contains. The default value is 20.

7http://php.net/manual/en/book.intl.php

http://php.net/manual/en/book.intl.php

8.2. PAGINATION 357

• yii\data\Pagination::$page gives the current page number (zero-
based). The default value is 0, meaning the �rst page.

With a fully speci�ed yii\data\Pagination object, you can retrieve and
display data partially. For example, if you are fetching data from a data-
base, you can specify the OFFSET and LIMIT clause of the DB query with the
corresponding values provided by the pagination. Below is an example,

use yii\data\Pagination;

// build a DB query to get all articles with status = 1

$query = Article::find()->where(['status' => 1]);

// get the total number of articles (but do not fetch the article data yet)

$count = $query->count();

// create a pagination object with the total count

$pagination = new Pagination(['totalCount' => $count]);

// limit the query using the pagination and retrieve the articles

$articles = $query->offset($pagination->offset)

->limit($pagination->limit)

->all();

Which page of articles will be returned in the above example? It depends on
whether a query parameter named page is given. By default, the pagination
will attempt to set the yii\data\Pagination::$page to be the value of the
page parameter. If the parameter is not provided, then it will default to 0.

To facilitate building the UI element that supports pagination, Yii provides
the yii\widgets\LinkPager widget that displays a list of page buttons upon
which users can click to indicate which page of data should be displayed. The
widget takes a pagination object so that it knows what is the current page
and how many page buttons should be displayed. For example,

use yii\widgets\LinkPager;

echo LinkPager::widget([

'pagination' => $pagination,

]);

If you want to build UI element manually, you may use yii\data\Pagination
::createUrl() to create URLs that would lead to di�erent pages. The
method requires a page parameter and will create a properly formatted URL
containing the page parameter. For example,

// specifies the route that the URL to be created should use

// If you do not specify this, the currently requested route will be used

$pagination->route = 'article/index';

// displays: /index.php?r=article%2Findex&page=100

echo $pagination->createUrl(100);

// displays: /index.php?r=article%2Findex&page=101

358 CHAPTER 8. DISPLAYING DATA

echo $pagination->createUrl(101);

Tip: You can customize the name of the page query parameter
by con�guring the yii\data\Pagination::pageParam property
when creating the pagination object.

8.3 Sorting

When displaying multiple rows of data, it is often needed that the data be
sorted according to some columns speci�ed by end users. Yii uses a yii

\data\Sort object to represent the information about a sorting schema. In
particular,

• yii\data\Sort::$attributes speci�es the attributes by which the
data can be sorted. An attribute can be as simple as a model attribute.
It can also be a composite one by combining multiple model attributes
or DB columns. More details will be given in the following.

• yii\data\Sort::$attributeOrders gives the currently requested or-
dering directions for each attribute.

• yii\data\Sort::$orders gives the ordering directions in terms of the
low-level columns.

To use yii\data\Sort, �rst declare which attributes can be sorted. Then
retrieve the currently requested ordering information from yii\data\Sort::

$attributeOrders or yii\data\Sort::$orders and use them to customize
the data query. For example,

use yii\data\Sort;

$sort = new Sort([

'attributes' => [

'age',

'name' => [

'asc' => ['first_name' => SORT_ASC, 'last_name' => SORT_ASC],

'desc' => ['first_name' => SORT_DESC, 'last_name' => SORT_DESC],

'default' => SORT_DESC,

'label' => 'Name',

],

],

]);

$articles = Article::find()

->where(['status' => 1])

->orderBy($sort->orders)

->all();

In the above example, two attributes are declared for the yii\data\Sort

object: age and name.

8.3. SORTING 359

The age attribute is a simple attribute corresponding to the age attribute
of the Article Active Record class. It is equivalent to the following declara-
tion:

'age' => [

'asc' => ['age' => SORT_ASC],

'desc' => ['age' => SORT_DESC],

'default' => SORT_ASC,

'label' => Inflector::camel2words('age'),

]

The name attribute is a composite attribute de�ned by first_name and last_name

of Article. It is declared using the following array structure:
• The asc and desc elements specify how to sort by the attribute in
ascending and descending directions, respectively. Their values repres-
ent the actual columns and the directions by which the data should be
sorted by. You can specify one or multiple columns to indicate simple
ordering or composite ordering.

• The default element speci�es the direction by which the attribute
should be sorted when initially requested. It defaults to ascending
order, meaning if it is not sorted before and you request to sort by this
attribute, the data will be sorted by this attribute in ascending order.

• The label element speci�es what label should be used when calling
yii\data\Sort::link() to create a sort link. If not set, yii\helpers
\Inflector::camel2words() will be called to generate a label from
the attribute name. Note that it will not be HTML-encoded.

Info: You can directly feed the value of yii\data\Sort::$orders
to the database query to build its ORDER BY clause. Do not use
yii\data\Sort::$attributeOrders because some of the attrib-
utes may be composite and cannot be recognized by the database
query.

You can call yii\data\Sort::link() to generate a hyperlink upon which
end users can click to request sorting the data by the speci�ed attribute.
You may also call yii\data\Sort::createUrl() to create a sortable URL.
For example,

// specifies the route that the URL to be created should use

// If you do not specify this, the currently requested route will be used

$sort->route = 'article/index';

// display links leading to sort by name and age, respectively

echo $sort->link('name') . ' | ' . $sort->link('age');

// displays: /index.php?r=article%2Findex&sort=age

echo $sort->createUrl('age');

yii\data\Sort checks the sort query parameter to determine which attrib-
utes are being requested for sorting. You may specify a default ordering via

360 CHAPTER 8. DISPLAYING DATA

yii\data\Sort::defaultOrder when the query parameter is not present.
You may also customize the name of the query parameter by con�guring the
yii\data\Sort::sortParam property.

8.4 Data Providers

In the Pagination and Sorting sections, we have described how to allow end
users to choose a particular page of data to display and sort them by some
columns. Because the task of paginating and sorting data is very common,
Yii provides a set of data provider classes to encapsulate it.

A data provider is a class implementing yii\data\DataProviderInterface.
It mainly supports retrieving paginated and sorted data. It is usually used
to work with data widgets so that end users can interactively paginate and
sort data.

The following data provider classes are included in the Yii releases:
• yii\data\ActiveDataProvider: uses yii\db\Query or yii\db\ActiveQuery
to query data from databases and return them in terms of arrays or
Active Record instances.

• yii\data\SqlDataProvider: executes a SQL statement and returns
database data as arrays.

• yii\data\ArrayDataProvider: takes a big array and returns a slice
of it based on the paginating and sorting speci�cations.

The usage of all these data providers share the following common pattern:

// create the data provider by configuring its pagination and sort

properties

$provider = new XyzDataProvider([

'pagination' => [...],

'sort' => [...],

]);

// retrieves paginated and sorted data

$models = $provider->getModels();

// get the number of data items in the current page

$count = $provider->getCount();

// get the total number of data items across all pages

$totalCount = $provider->getTotalCount();

You specify the pagination and sorting behaviors of a data provider by
con�guring its yii\data\BaseDataProvider::pagination and yii\data

\BaseDataProvider::sort properties which correspond to the con�gura-
tions for yii\data\Pagination and yii\data\Sort, respectively. You may
also con�gure them to be false to disable pagination and/or sorting features.

Data widgets, such as yii\grid\GridView, have a property named dataProvider

which can take a data provider instance and display the data it provides.
For example,

8.4. DATA PROVIDERS 361

echo yii\grid\GridView::widget([

'dataProvider' => $dataProvider,

]);

These data providers mainly vary in the way how the data source is speci�ed.
In the following subsections, we will explain the detailed usage of each of
these data providers.

8.4.1 Active Data Provider

To use yii\data\ActiveDataProvider, you should con�gure its yii\data
\ActiveDataProvider::query property. It can take either a yii\db\Query

or yii\db\ActiveQuery object. If the former, the data returned will be
arrays; if the latter, the data returned can be either arrays or Active Record
instances. For example,

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([

'query' => $query,

'pagination' => [

'pageSize' => 10,

],

'sort' => [

'defaultOrder' => [

'created_at' => SORT_DESC,

'title' => SORT_ASC,

]

],

]);

// returns an array of Post objects

$posts = $provider->getModels();

If $query in the above example is created using the following code, then the
data provider will return raw arrays.

use yii\db\Query;

$query = (new Query())->from('post')->where(['status' => 1]);

Note: If a query already speci�es the orderBy clause, the new
ordering instructions given by end users (through the sort con-
�guration) will be appended to the existing orderBy clause. Any
existing limit and offset clauses will be overwritten by the pa-
gination request from end users (through the pagination con�g-
uration).

362 CHAPTER 8. DISPLAYING DATA

By default, yii\data\ActiveDataProvider uses the db application compon-
ent as the database connection. You may use a di�erent database connection
by con�guring the yii\data\ActiveDataProvider::db property.

8.4.2 SQL Data Provider

yii\data\SqlDataProvider works with a raw SQL statement which is used
to fetch the needed data. Based on the speci�cations of yii\data\SqlDataProvider
::sort and yii\data\SqlDataProvider::pagination, the provider will ad-
just the ORDER BY and LIMIT clauses of the SQL statement accordingly to fetch
only the requested page of data in the desired order.

To use yii\data\SqlDataProvider, you should specify the yii\data

\SqlDataProvider::sql property as well as the yii\data\SqlDataProvider
::totalCount property. For example,

use yii\data\SqlDataProvider;

$count = Yii::$app->db->createCommand('

SELECT COUNT(*) FROM post WHERE status=:status

', [':status' => 1])->queryScalar();

$provider = new SqlDataProvider([

'sql' => 'SELECT * FROM post WHERE status=:status',

'params' => [':status' => 1],

'totalCount' => $count,

'pagination' => [

'pageSize' => 10,

],

'sort' => [

'attributes' => [

'title',

'view_count',

'created_at',

],

],

]);

// returns an array of data rows

$models = $provider->getModels();

Info: The yii\data\SqlDataProvider::totalCount property
is required only if you need to paginate the data. This is because
the SQL statement speci�ed via yii\data\SqlDataProvider::

sql will be modi�ed by the provider to return only the currently
requested page of data. The provider still needs to know the total
number of data items in order to correctly calculate the number
of pages available.

8.4. DATA PROVIDERS 363

8.4.3 Array Data Provider

yii\data\ArrayDataProvider is best used when working with a big array.
The provider allows you to return a page of the array data sorted by one or
multiple columns. To use yii\data\ArrayDataProvider, you should specify
the yii\data\ArrayDataProvider::allModels property as the big array.
Elements in the big array can be either associative arrays (e.g. query results
of DAO) or objects (e.g. Active Record instances). For example,

use yii\data\ArrayDataProvider;

$data = [

['id' => 1, 'name' => 'name 1', ...],

['id' => 2, 'name' => 'name 2', ...],

...

['id' => 100, 'name' => 'name 100', ...],

];

$provider = new ArrayDataProvider([

'allModels' => $data,

'pagination' => [

'pageSize' => 10,

],

'sort' => [

'attributes' => ['id', 'name'],

],

]);

// get the rows in the currently requested page

$rows = $provider->getModels();

Note: Compared to Active Data Provider and SQL Data Pro-
vider, array data provider is less e�cient because it requires load-
ing all data into the memory.

8.4.4 Working with Data Keys

When using the data items returned by a data provider, you often need to
identify each data item with a unique key. For example, if the data items rep-
resent customer information, you may want to use the customer ID as the key
for each customer data. Data providers can return a list of such keys corres-
ponding with the data items returned by yii\data\DataProviderInterface
::getModels(). For example,

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([

'query' => $query,

]);

364 CHAPTER 8. DISPLAYING DATA

// returns an array of Post objects

$posts = $provider->getModels();

// returns the primary key values corresponding to $posts

$ids = $provider->getKeys();

In the above example, because you provide to yii\data\ActiveDataProvider
an yii\db\ActiveQuery object, it is intelligent enough to return primary
key values as the keys. You may also explicitly specify how the key values
should be calculated by con�guring yii\data\ActiveDataProvider::key

with a column name or a callable calculating key values. For example,

// use "slug" column as key values

$provider = new ActiveDataProvider([

'query' => Post::find(),

'key' => 'slug',

]);

// use the result of md5(id) as key values

$provider = new ActiveDataProvider([

'query' => Post::find(),

'key' => function ($model) {

return md5($model->id);

}

]);

8.4.5 Creating Custom Data Provider

To create your own custom data provider classes, you should implement yii
\data\DataProviderInterface. An easier way is to extend from yii\data

\BaseDataProvider which allows you to focus on the core data provider
logic. In particular, you mainly need to implement the following methods:

• yii\data\BaseDataProvider::prepareModels(): prepares the data
models that will be made available in the current page and returns
them as an array.

• yii\data\BaseDataProvider::prepareKeys(): accepts an array of
currently available data models and returns keys associated with them.

• yii\data\BaseDataProvider::prepareTotalCount(): returns a value
indicating the total number of data models in the data provider.

Below is an example of a data provider that reads CSV data e�ciently:

<?php

use yii\data\BaseDataProvider;

class CsvDataProvider extends BaseDataProvider

{

/**

* @var string name of the CSV file to read

*/

8.4. DATA PROVIDERS 365

public $filename;

/**

* @var string|callable name of the key column or a callable returning

it

*/

public $key;

/**

* @var SplFileObject

*/

protected $fileObject; // SplFileObject is very convenient for seeking

to particular line in a file

/**

* @inheritdoc

*/

public function init()

{

parent::init();

// open file

$this->fileObject = new SplFileObject($this->filename);

}

/**

* @inheritdoc

*/

protected function prepareModels()

{

$models = [];

$pagination = $this->getPagination();

if ($pagination === false) {

// in case there's no pagination, read all lines

while (!$this->fileObject->eof()) {

$models[] = $this->fileObject->fgetcsv();

$this->fileObject->next();

}

} else {

// in case there's pagination, read only a single page

$pagination->totalCount = $this->getTotalCount();

$this->fileObject->seek($pagination->getOffset());

$limit = $pagination->getLimit();

for ($count = 0; $count < $limit; ++$count) {

$models[] = $this->fileObject->fgetcsv();

$this->fileObject->next();

}

}

return $models;

}

366 CHAPTER 8. DISPLAYING DATA

/**

* @inheritdoc

*/

protected function prepareKeys($models)

{

if ($this->key !== null) {

$keys = [];

foreach ($models as $model) {

if (is_string($this->key)) {

$keys[] = $model[$this->key];

} else {

$keys[] = call_user_func($this->key, $model);

}

}

return $keys;

} else {

return array_keys($models);

}

}

/**

* @inheritdoc

*/

protected function prepareTotalCount()

{

$count = 0;

while (!$this->fileObject->eof()) {

$this->fileObject->next();

++$count;

}

return $count;

}

}

8.5 Data widgets

Yii provides a set of widgets that can be used to display data. While the
DetailView widget can be used to display data for a single record, ListView
and GridView can be used to display a list or table of data records providing
features like pagination, sorting and �ltering.

8.5.1 DetailView

The yii\widgets\DetailView widget displays the details of a single data
yii\widgets\DetailView::$model.

8.5. DATA WIDGETS 367

It is best used for displaying a model in a regular format (e.g. each
model attribute is displayed as a row in a table). The model can be either
an instance or subclass of \yii\base\Model such as an active record or an
associative array.

DetailView uses the yii\widgets\DetailView::$attributes property
to determine which model attributes should be displayed and how they
should be formatted. See the formatter section for available formatting op-
tions.

A typical usage of DetailView is as follows:

echo DetailView::widget([

'model' => $model,

'attributes' => [

'title', // title

attribute (in plain text)

'description:html', // description

attribute formatted as HTML

[// the owner name

of the model

'label' => 'Owner',

'value' => $model->owner->name,

'contentOptions' => ['class' => 'bg-red'], // HTML

attributes to customize value tag

'captionOptions' => ['tooltip' => 'Tooltip'], // HTML

attributes to customize label tag

],

'created_at:datetime', // creation date

formatted as datetime

],

]);

Remember that unlike yii\widgets\GridView which processes a set of mod-
els, yii\widgets\DetailView processes just one. So most of the time there
is no need for using closure since $model is the only one model for display and
available in view as a variable.

However some cases can make using of closure useful. For example when
visible is speci�ed and you want to prevent value calculations in case it
evaluates to false:

echo DetailView::widget([

'model' => $model,

'attributes' => [

[

'attribute' => 'owner',

'value' => function ($model) {

return $model->owner->name;

},

'visible' => \Yii::$app->user->can('posts.owner.view'),

],

],

]);

368 CHAPTER 8. DISPLAYING DATA

8.5.2 ListView

The yii\widgets\ListView widget is used to display data from a data
provider. Each data model is rendered using the speci�ed yii\widgets

\ListView::$itemView. Since it provides features such as pagination, sort-
ing and �ltering out of the box, it is handy both to display information to
end user and to create data managing UI.

A typical usage is as follows:

use yii\widgets\ListView;

use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([

'query' => Post::find(),

'pagination' => [

'pageSize' => 20,

],

]);

echo ListView::widget([

'dataProvider' => $dataProvider,

'itemView' => '_post',

]);

The _post view �le could contain the following:

<?php

use yii\helpers\Html;

use yii\helpers\HtmlPurifier;

?>

<div class="post">

<h2><?= Html::encode($model->title) ?></h2>

<?= HtmlPurifier::process($model->text) ?>

</div>

In the view �le above, the current data model is available as $model. Addi-
tionally the following variables are available:

• $key: mixed, the key value associated with the data item.
• $index: integer, the zero-based index of the data item in the items array
returned by the data provider.

• $widget: ListView, this widget instance.

If you need to pass additional data to each view, you can use the yii\widgets
\ListView::$viewParams property to pass key value pairs like the following:

echo ListView::widget([

'dataProvider' => $dataProvider,

'itemView' => '_post',

'viewParams' => [

'fullView' => true,

'context' => 'main-page',

// ...

],

]);

8.5. DATA WIDGETS 369

These are then also available as variables in the view.

8.5.3 GridView

Data grid or yii\grid\GridView is one of the most powerful Yii widgets.
It is extremely useful if you need to quickly build the admin section of the
system. It takes data from a data provider and renders each row using a set
of yii\grid\GridView::columns presenting data in the form of a table.

Each row of the table represents the data of a single data item, and
a column usually represents an attribute of the item (some columns may
correspond to complex expressions of attributes or static text).

The minimal code needed to use GridView is as follows:

use yii\grid\GridView;

use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([

'query' => Post::find(),

'pagination' => [

'pageSize' => 20,

],

]);

echo GridView::widget([

'dataProvider' => $dataProvider,

]);

The above code �rst creates a data provider and then uses GridView to
display every attribute in every row taken from the data provider. The
displayed table is equipped with sorting and pagination functionality out of
the box.

Grid columns

The columns of the grid table are con�gured in terms of yii\grid\Column
classes, which are con�gured in the yii\grid\GridView::columns property
of GridView con�guration. Depending on column type and settings these are
able to present data di�erently. The default class is yii\grid\DataColumn,
which represents a model attribute and can be sorted and �ltered by.

echo GridView::widget([

'dataProvider' => $dataProvider,

'columns' => [

['class' => 'yii\grid\SerialColumn'],

// Simple columns defined by the data contained in $dataProvider.

// Data from the model's column will be used.

'id',

'username',

// More complex one.

[

'class' => 'yii\grid\DataColumn', // can be omitted, as it is

the default

370 CHAPTER 8. DISPLAYING DATA

'value' => function ($data) {

return $data->name; // $data['name'] for array data, e.g.

using SqlDataProvider.

},

],

],

]);

Note that if the yii\grid\GridView::columns part of the con�guration
isn't speci�ed, Yii tries to show all possible columns of the data provider's
model.

Column classes

Grid columns could be customized by using di�erent column classes:

echo GridView::widget([

'dataProvider' => $dataProvider,

'columns' => [

[

'class' => 'yii\grid\SerialColumn', // <-- here

// you may configure additional properties here

],

In addition to column classes provided by Yii that we'll review below, you
can create your own column classes.

Each column class extends from yii\grid\Column so that there are some
common options you can set while con�guring grid columns.

• yii\grid\Column::header allows to set content for header row.
• yii\grid\Column::footer allows to set content for footer row.
• yii\grid\Column::visible de�nes if the column should be visible.
• yii\grid\Column::content allows you to pass a valid PHP callback
that will return data for a row. The format is the following:

function ($model, $key, $index, $column) {

return 'a string';

}

You may specify various container HTML options by passing arrays to:
• yii\grid\Column::headerOptions

• yii\grid\Column::footerOptions

• yii\grid\Column::filterOptions

• yii\grid\Column::contentOptions

Data column yii\grid\DataColumn is used for displaying and sorting
data. It is the default column type so the specifying class could be omitted
when using it.

The main setting of the data column is its yii\grid\DataColumn::

format property. Its values correspond to methods in the formatter ap-
plication component that is \yii\i18n\Formatter by default:

8.5. DATA WIDGETS 371

echo GridView::widget([

'columns' => [

[

'attribute' => 'name',

'format' => 'text'

],

[

'attribute' => 'birthday',

'format' => ['date', 'php:Y-m-d']

],

],

]);

In the above, text corresponds to \yii\i18n\Formatter::asText(). The
value of the column is passed as the �rst argument. In the second column
de�nition, date corresponds to \yii\i18n\Formatter::asDate(). The value
of the column is, again, passed as the �rst argument while `php:Y-m-d' is
used as the second argument value.

For a list of available formatters see the section about Data Formatting.
For con�guring data columns there is also a shortcut format which is

described in the API documentation for yii\grid\GridView::columns.

Action column yii\grid\ActionColumn displays action buttons such as
update or delete for each row.

echo GridView::widget([

'dataProvider' => $dataProvider,

'columns' => [

[

'class' => 'yii\grid\ActionColumn',

// you may configure additional properties here

],

Available properties you can con�gure are:
• yii\grid\ActionColumn::controller is the ID of the controller that
should handle the actions. If not set, it will use the currently active
controller.

• yii\grid\ActionColumn::template de�nes the template used for com-
posing each cell in the action column. Tokens enclosed within curly
brackets are treated as controller action IDs (also called button names

in the context of action column). They will be replaced by the corres-
ponding button rendering callbacks speci�ed in yii\grid\ActionColumn
::$buttons. For example, the token {view} will be replaced by the res-
ult of the callback buttons['view']. If a callback cannot be found, the
token will be replaced with an empty string. The default tokens are
{view} {update} {delete}.

• yii\grid\ActionColumn::buttons is an array of button rendering
callbacks. The array keys are the button names (without curly brack-
ets), and the values are the corresponding button rendering callbacks.

372 CHAPTER 8. DISPLAYING DATA

The callbacks should use the following signature:

function ($url, $model, $key) {

// return the button HTML code

}

In the code above, $url is the URL that the column creates for the
button, $model is the model object being rendered for the current row,
and $key is the key of the model in the data provider array.

• yii\grid\ActionColumn::urlCreator is a callback that creates a but-
ton URL using the speci�ed model information. The signature of the
callback should be the same as that of yii\grid\ActionColumn::

createUrl(). If this property is not set, button URLs will be cre-
ated using yii\grid\ActionColumn::createUrl().

• yii\grid\ActionColumn::visibleButtons is an array of visibility con-
ditions for each button. The array keys are the button names (without
curly brackets), and the values are the boolean true/false or the an-
onymous function. When the button name is not speci�ed in this array
it will be shown by default. The callbacks must use the following sig-
nature:

function ($model, $key, $index) {

return $model->status === 'editable';

}

Or you can pass a boolean value:

[

'update' => \Yii::$app->user->can('update')

]

Checkbox column yii\grid\CheckboxColumn displays a column of check-
boxes.

To add a CheckboxColumn to the GridView, add it to the yii\grid

\GridView::$columns con�guration as follows:

echo GridView::widget([

'dataProvider' => $dataProvider,

'columns' => [

// ...

[

'class' => 'yii\grid\CheckboxColumn',

// you may configure additional properties here

],

],

Users may click on the checkboxes to select rows of the grid. The selected
rows may be obtained by calling the following JavaScript code:

var keys = $('#grid').yiiGridView('getSelectedRows');

// keys is an array consisting of the keys associated with the selected rows

8.5. DATA WIDGETS 373

Serial column yii\grid\SerialColumn renders row numbers starting with
1 and going forward.

Usage is as simple as the following:

echo GridView::widget([

'dataProvider' => $dataProvider,

'columns' => [

['class' => 'yii\grid\SerialColumn'], // <-- here

// ...

Sorting data

Note: This section is under development.

• https://github.com/yiisoft/yii2/issues/1576

Filtering data

For �ltering data, the GridView needs a model that represents the search
criteria which is usually taken from the �lter �elds in the GridView table.
A common practice when using active records is to create a search Model
class that provides needed functionality (it can be generated for you by Gii).
This class de�nes the validation rules to show �lter controls on the GridView
table and to provide a search() method that will return the data provider
with an adjusted query that processes the search criteria.

To add the search capability for the Postmodel, we can create a PostSearch

model like the following example:

<?php

namespace app\models;

use Yii;

use yii\base\Model;

use yii\data\ActiveDataProvider;

class PostSearch extends Post

{

public function rules()

{

// only fields in rules() are searchable

return [

[['id'], 'integer'],

[['title', 'creation_date'], 'safe'],

];

}

public function scenarios()

{

// bypass scenarios() implementation in the parent class

return Model::scenarios();

https://github.com/yiisoft/yii2/issues/1576

374 CHAPTER 8. DISPLAYING DATA

}

public function search($params)

{

$query = Post::find();

$dataProvider = new ActiveDataProvider([

'query' => $query,

]);

// load the search form data and validate

if (!($this->load($params) && $this->validate())) {

return $dataProvider;

}

// adjust the query by adding the filters

$query->andFilterWhere(['id' => $this->id]);

$query->andFilterWhere(['like', 'title', $this->title])

->andFilterWhere(['like', 'creation_date', $this->

creation_date]);

return $dataProvider;

}

}

Tip: See Query Builder and especially Filter Conditions to learn
how to build �ltering query.

You can use this function in the controller to get the dataProvider for the
GridView:

$searchModel = new PostSearch();

$dataProvider = $searchModel->search(Yii::$app->request->get());

return $this->render('myview', [

'dataProvider' => $dataProvider,

'searchModel' => $searchModel,

]);

And in the view you then assign the $dataProvider and $searchModel to the
GridView:

echo GridView::widget([

'dataProvider' => $dataProvider,

'filterModel' => $searchModel,

'columns' => [

// ...

],

]);

Separate �lter form

Most of the time using GridView header �lters is enough, but in case you
need a separate �lter form, you can easily add it as well. You can create

8.5. DATA WIDGETS 375

partial view _search.php with the following contents:

<?php

use yii\helpers\Html;

use yii\widgets\ActiveForm;

/* @var $this yii\web\View */

/* @var $model app\models\PostSearch */

/* @var $form yii\widgets\ActiveForm */

?>

<div class="post-search">

<?php $form = ActiveForm::begin([

'action' => ['index'],

'method' => 'get',

]); ?>

<?= $form->field($model, 'title') ?>

<?= $form->field($model, 'creation_date') ?>

<div class="form-group">

<?= Html::submitButton('Search', ['class' => 'btn btn-primary']) ?>

<?= Html::submitButton('Reset', ['class' => 'btn btn-default']) ?>

</div>

<?php ActiveForm::end(); ?>

</div>

and include it in index.php view like so:

<?= $this->render('_search', ['model' => $searchModel]) ?>

Note: if you use Gii to generate CRUD code, the separate �lter
form (_search.php) is generated by default, but is commented in
index.php view. Uncomment it and it's ready to use!

Separate �lter form is useful when you need to �lter by �elds, that are not
displayed in GridView or for special �ltering conditions, like date range.
For �ltering by date range we can add non DB attributes createdFrom and
createdTo to the search model:

class PostSearch extends Post

{

/**

* @var string

*/

public $createdFrom;

/**

* @var string

*/

376 CHAPTER 8. DISPLAYING DATA

public $createdTo;

}

Extend query conditions in the search() method like so:

$query->andFilterWhere(['>=', 'creation_date', $this->createdFrom])

->andFilterWhere(['<=', 'creation_date', $this->createdTo]);

And add the representative �elds to the �lter form:

<?= $form->field($model, 'creationFrom') ?>

<?= $form->field($model, 'creationTo') ?>

Working with model relations

When displaying active records in a GridView you might encounter the case
where you display values of related columns such as the post author's name
instead of just his id. You do this by de�ning the attribute name in yii\grid

\GridView::$columns as author.name when the Post model has a relation
named author and the author model has an attribute name. The GridView
will then display the name of the author but sorting and �ltering are not
enabled by default. You have to adjust the PostSearch model that has been
introduced in the last section to add this functionality.

To enable sorting on a related column you have to join the related table
and add the sorting rule to the Sort component of the data provider:

$query = Post::find();

$dataProvider = new ActiveDataProvider([

'query' => $query,

]);

// join with relation `author` that is a relation to the table `users`

// and set the table alias to be `author`

$query->joinWith(['author' => function($query) { $query->from(['author' => '

users']); }]);

// since version 2.0.7, the above line can be simplified to $query->joinWith

('author AS author');

// enable sorting for the related column

$dataProvider->sort->attributes['author.name'] = [

'asc' => ['author.name' => SORT_ASC],

'desc' => ['author.name' => SORT_DESC],

];

// ...

Filtering also needs the joinWith call as above. You also need to de�ne the
searchable column in attributes and rules like this:

public function attributes()

{

// add related fields to searchable attributes

return array_merge(parent::attributes(), ['author.name']);

8.5. DATA WIDGETS 377

}

public function rules()

{

return [

[['id'], 'integer'],

[['title', 'creation_date', 'author.name'], 'safe'],

];

}

In search() you then just add another �lter condition with:

$query->andFilterWhere(['LIKE', 'author.name', $this->getAttribute('author.

name')]);

Info: In the above we use the same string for the relation name
and the table alias; however, when your alias and relation name
di�er, you have to pay attention to where you use the alias and
where you use the relation name. A simple rule for this is to use
the alias in every place that is used to build the database query
and the relation name in all other de�nitions such as attributes()
and rules() etc.

For example, if you use the alias au for the author relation table,
the joinWith statement looks like the following:

$query->joinWith(['author au']);

It is also possible to just call $query->joinWith(['author']); when
the alias is de�ned in the relation de�nition.

The alias has to be used in the �lter condition but the attribute
name stays the same:

$query->andFilterWhere(['LIKE', 'au.name', $this->getAttribute('

author.name')]);

The same is true for the sorting de�nition:

$dataProvider->sort->attributes['author.name'] = [

'asc' => ['au.name' => SORT_ASC],

'desc' => ['au.name' => SORT_DESC],

];

Also, when specifying the yii\data\Sort::defaultOrder for
sorting, you need to use the relation name instead of the alias:

$dataProvider->sort->defaultOrder = ['author.name' => SORT_ASC];

Info: For more information on joinWith and the queries per-
formed in the background, check the active record docs on joining
with relations.

378 CHAPTER 8. DISPLAYING DATA

Using SQL views for �ltering, sorting and displaying data There
is also another approach that can be faster and more useful - SQL views.
For example, if we need to show the gridview with users and their pro�les,
we can do so in this way:

CREATE OR REPLACE VIEW vw_user_info AS

SELECT user.*, user_profile.lastname, user_profile.firstname

FROM user, user_profile

WHERE user.id = user_profile.user_id

Then you need to create the ActiveRecord that will be representing this
view:

namespace app\models\views\grid;

use yii\db\ActiveRecord;

class UserView extends ActiveRecord

{

/**

* @inheritdoc

*/

public static function tableName()

{

return 'vw_user_info';

}

public static function primaryKey()

{

return ['id'];

}

/**

* @inheritdoc

*/

public function rules()

{

return [

// define here your rules

];

}

/**

* @inheritdoc

*/

public static function attributeLabels()

{

return [

// define here your attribute labels

];

}

8.5. DATA WIDGETS 379

}

After that you can use this UserView active record with search models,
without additional speci�cation of sorting and �ltering attributes. All at-
tributes will be working out of the box. Note that this approach has several
pros and cons:

• you don't need to specify di�erent sorting and �ltering conditions.
Everything works out of the box;

• it can be much faster because of the data size, count of sql queries
performed (for each relation you will not need any additional query);

• since this is just a simple mapping UI on the sql view it lacks some
domain logic that is in your entities, so if you have some methods like
isActive, isDeleted or others that will in�uence the UI, you will need
to duplicate them in this class too.

Multiple GridViews on one page

You can use more than one GridView on a single page but some addi-
tional con�guration is needed so that they do not interfere with each other.
When using multiple instances of GridView you have to con�gure di�er-
ent parameter names for the generated sort and pagination links so that
each GridView has its own individual sorting and pagination. You do so
by setting the yii\data\Sort::sortParam and yii\data\Pagination::

pageParam of the dataProvider's yii\data\BaseDataProvider::$sort and
yii\data\BaseDataProvider::$pagination instances.

Assume we want to list the Post and User models for which we have
already prepared two data providers in $userProvider and $postProvider:

use yii\grid\GridView;

$userProvider->pagination->pageParam = 'user-page';

$userProvider->sort->sortParam = 'user-sort';

$postProvider->pagination->pageParam = 'post-page';

$postProvider->sort->sortParam = 'post-sort';

echo '<h1>Users</h1>';

echo GridView::widget([

'dataProvider' => $userProvider,

]);

echo '<h1>Posts</h1>';

echo GridView::widget([

'dataProvider' => $postProvider,

]);

380 CHAPTER 8. DISPLAYING DATA

Using GridView with Pjax

The yii\widgets\Pjax widget allows you to update a certain section of a
page instead of reloading the entire page. You can use it to update only the
yii\grid\GridView content when using �lters.

use yii\widgets\Pjax;

use yii\grid\GridView;

Pjax::begin([

// PJax options

]);

Gridview::widget([

// GridView options

]);

Pjax::end();

Pjax also works for the links inside the yii\widgets\Pjax widget and for
the links speci�ed by yii\widgets\Pjax::$linkSelector. But this might
be a problem for the links of an yii\grid\ActionColumn. To prevent this,
add the HTML attribute data-pjax="0" to the links when you edit the yii

\grid\ActionColumn::$buttons property.

GridView/ListView with Pjax in Gii Since 2.0.5, the CRUD gener-
ator of Gii has an option called $enablePjax that can be used via either web
interface or command line.

yii gii/crud --controllerClass="backend\\controllers\PostController" \

--modelClass="common\\models\\Post" \

--enablePjax=1

Which generates a yii\widgets\Pjax widget wrapping the yii\grid\GridView
or yii\widgets\ListView widgets.

8.5.4 Further reading

• Rendering Data in Yii 2 with GridView and ListView8 by Arno Slatius.

8.6 Working with Client Scripts

Modern web applications, additionally to static HTML pages that are rendered
and sent to the browser, contain JavaScript that is used to modify the page
in the browser by manipulating existing elements or loading new content via
AJAX. This section describes methods provided by Yii for adding JavaScript
and CSS to a website as well as dynamically adjusting these.

8http://www.sitepoint.com/rendering-data-in-yii-2-with-gridview-and-listview/

http://www.sitepoint.com/rendering-data-in-yii-2-with-gridview-and-listview/

8.6. WORKING WITH CLIENT SCRIPTS 381

8.6.1 Registering scripts

When working with the yii\web\View object you can dynamically register
frontend scripts. There are two dedicated methods for this:

• yii\web\View::registerJs() for inline scripts
• yii\web\View::registerJsFile() for external scripts

Registering inline scripts

Inline scripts are useful for con�guration, dynamically generated code and
small snippets created by reusable frontend code contained in widgets. The
yii\web\View::registerJs() method for adding these can be used as fol-
lows:

$this->registerJs(

"$('#myButton').on('click', function() { alert('Button clicked!'); });",

View::POS_READY,

'my-button-handler'

);

The �rst argument is the actual JS code we want to insert into the page.
It will be wrapped into a <script> tag. The second argument determines at
which position the script should be inserted into the page. Possible values
are:

• yii\web\View::POS_HEAD for head section.
• yii\web\View::POS_BEGIN for right after opening <body>.
• yii\web\View::POS_END for right before closing </body>.
• yii\web\View::POS_READY for executing code on the document ready

event9. This will automatically register yii\web\JqueryAsset and
wrap the code into the appropriate jQuery code. This is the default
position.

• yii\web\View::POS_LOAD for executing code on the document load

event10. Same as the above, this will also register yii\web\JqueryAsset
automatically.

The last argument is a unique script ID that is used to identify the script
code block and replace an existing one with the same ID instead of adding
a new one. If you don't provide it, the JS code itself will be used as the ID.
It is used to avoid registration of the same code muliple times.

Registering script �les

The arguments for yii\web\View::registerJsFile() are similar to those
for yii\web\View::registerCssFile(). In the following example, we re-
gister the main.js �le with the dependency on the yii\web\JqueryAsset. It
means that the main.js �le will be added AFTER jquery.js. Without such

9http://learn.jquery.com/using-jquery-core/document-ready/
10http://learn.jquery.com/using-jquery-core/document-ready/

http://learn.jquery.com/using-jquery-core/document-ready/
http://learn.jquery.com/using-jquery-core/document-ready/

382 CHAPTER 8. DISPLAYING DATA

dependency speci�cation, the relative order between main.js and jquery.js

would be unde�ned and the code would not work.
An external script can be added like the following:

$this->registerJsFile(

'@web/js/main.js',

['depends' => [\yii\web\JqueryAsset::className()]]

);

This will add a tag for the /js/main.js script located under the application
base URL.

It is highly recommended to use asset bundles to register external JS �les
rather than yii\web\View::registerJsFile() because these allow better
�exibility and more granular dependency con�guration. Also using asset
bundles allows you to combine and compress multiple JS �les, which is de-
sirable for high tra�c websites.

8.6.2 Registering CSS

Similar to JavaScript, you can register CSS using yii\web\View::registerCss()
or yii\web\View::registerCssFile(). The former registers a block of CSS
code while the latter registers an external CSS �le.

Registering inline CSS

$this->registerCss("body { background: #f00; }");

The code above will result in adding the following to the <head> section of
the page:

<style>

body { background: #f00; }

</style>

If you want to specify additional properties of the style tag, pass an array
of name-values to the second argument. The last argument is a unique ID
that is used to identify the style block and make sure it is only added once
in case the same style is registered from di�erent places in the code.
Registering CSS �les

A CSS �le can be registered using the following:

$this->registerCssFile("@web/css/themes/black-and-white.css", [

'depends' => [\yii\bootstrap\BootstrapAsset::className()],

'media' => 'print',

], 'css-print-theme');

The above code will add a link to the /css/themes/black-and-white.css CSS
�le to the <head> section of the page.

• The �rst argument speci�es the CSS �le to be registered. The @web in
this example is an alias for the applications base URL.

8.6. WORKING WITH CLIENT SCRIPTS 383

• The second argument speci�es the HTML attributes for the result-
ing <link> tag. The option depends is specially handled. It speci�es
which asset bundles this CSS �le depends on. In this case, the de-
pendent asset bundle is yii\bootstrap\BootstrapAsset. This means
the CSS �le will be added after the CSS �les from yii\bootstrap

\BootstrapAsset.
• The last argument speci�es an ID identifying this CSS �le. If it is not
provided, the URL of the CSS �le will be used instead.

It is highly recommended to use asset bundles to register external CSS �les
rather than yii\web\View::registerCssFile(). Using asset bundles al-
lows you to combine and compress multiple CSS �les, which is desirable for
high tra�c websites. It also provides more �exibility as all asset dependen-
cies of your application are con�gured in one place.

8.6.3 Registering asset bundles

As was mentioned earlier it's recommended to use asset bundles instead of
registering CSS and JavaScript �les directly. You can get details on how to
de�ne asset bundles in the �Assets� section. As for using already de�ned
asset bundles, it's very straightforward:

\frontend\assets\AppAsset::register($this);

In the above code, in the context of a view �le, the AppAsset bundle is re-
gistered on the current view (represented by $this). When registering asset
bundles from within a widget, you would pass the yii\base\Widget::$view
of the widget instead ($this->view).

8.6.4 Generating Dynamic Javascript

In view �les often the HTML code is not written out directly but generated
by some PHP code dependent on the variables of the view. In order for
the generated HTML to be manipulated with Javascript, the JS code has to
contain dynamic parts too, for example the IDs of the jQuery selectors.

To insert PHP variables into JS code, their values have to be escaped
properly. Especially when the JS code is inserted into HTML instead of resid-
ing in a dedicated JS �le. Yii provides the yii\helpers\Json::htmlEncode()
method of the yii\helpers\Json helper for this purpose. Its usage will be
shown in the following examples.

Registering a global JavaScript con�guration

In this example we use an array to pass global con�guration parameters from
the PHP part of the application to the JS frontend code.

$options = [

'appName' => Yii::$app->name,

384 CHAPTER 8. DISPLAYING DATA

'baseUrl' => Yii::$app->request->baseUrl,

'language' => Yii::$app->language,

// ...

];

$this->registerJs(

"var yiiOptions = ".\yii\helpers\Json::htmlEncode($options).";",

View::POS_HEAD,

'yiiOptions'

);

The above code will register a <script>-tag containing the JavaScript variable
de�nition, e.g.:

var yiiOptions = {"appName":"My Yii Application","baseUrl":"/basic/web","

language":"en"};

In your JavaScript code you can now access these like yiiOptions.baseUrl or
yiiOptions.language.

Passing translated messages

You may encounter a case where your JavaScript needs to print a message
reacting to some event. In an application that works with multiple languages
this string has to be translated to the current application language. One way
to achieve this is to use the message translation feature provided by Yii and
passing the result to the JavaScript code.

$message = \yii\helpers\Json::htmlEncode(

\Yii::t('app', 'Button clicked!')

);

$this->registerJs(<<<JS

$('#myButton').on('click', function() { alert($message); });",

JS

);

The above example code uses PHP Heredoc syntax11 for better readabil-
ity. This also enables better syntax highlighting in most IDEs so it is the
preferred way of writing inline JavaScript, especially useful for code that is
longer than a single line. The variable $message is created in PHP and thanks
to yii\helpers\Json::htmlEncode it contains the string in valid JS syntax,
which can be inserted into the JavaScript code to place the dynamic string
in the function call to alert().

Note: When using Heredoc, be careful with variable naming in
JS code as variables beginning with $ may be interpreted as PHP
variables which will be replaced by their content. The jQuery
function in form of $(or $. is not interpreted as a PHP variable
and can safely be used.

11http://php.net/manual/en/language.types.string.php#language.types.

string.syntax.heredoc

http://php.net/manual/en/language.types.string.php#language.types.string.syntax.heredoc
http://php.net/manual/en/language.types.string.php#language.types.string.syntax.heredoc

8.7. THEMING 385

8.6.5 The yii.js script

Note: This section has not been written yet. It should contain
explanation of the functionality provided by yii.js:

• Yii JavaScript Modules
• CSRF param handling
• data-confirm handler
• data-method handler
• script �ltering
• redirect handling

8.7 Theming

Theming is a way to replace a set of views with another without the need of
touching the original view rendering code. You can use theming to system-
atically change the look and feel of an application.

To use theming, you should con�gure the yii\base\View::theme prop-
erty of the view application component. The property con�gures a yii\base

\Theme object which governs how view �les are being replaced. You should
mainly specify the following properties of yii\base\Theme:

• yii\base\Theme::basePath: speci�es the base directory that contains
the themed resources (CSS, JS, images, etc.)

• yii\base\Theme::baseUrl: speci�es the base URL of the themed re-
sources.

• yii\base\Theme::pathMap: speci�es the replacement rules of view
�les. More details will be given in the following subsections.

For example, if you call $this->render('about') in SiteController, you will
be rendering the view �le @app/views/site/about.php. However, if you enable
theming in the following application con�guration, the view �le @app/themes

/basic/site/about.php will be rendered, instead.

return [

'components' => [

'view' => [

'theme' => [

'basePath' => '@app/themes/basic',

'baseUrl' => '@web/themes/basic',

'pathMap' => [

'@app/views' => '@app/themes/basic',

],

],

],

],

];

386 CHAPTER 8. DISPLAYING DATA

Info: Path aliases are supported by themes. When doing view
replacement, path aliases will be turned into the actual �le paths
or URLs.

You can access the yii\base\Theme object through the yii\base\View::

theme property. For example, in a view �le, you can write the following code
because $this refers to the view object:

$theme = $this->theme;

// returns: $theme->baseUrl . '/img/logo.gif'

$url = $theme->getUrl('img/logo.gif');

// returns: $theme->basePath . '/img/logo.gif'

$file = $theme->getPath('img/logo.gif');

The yii\base\Theme::pathMap property governs how view �les should be
replaced. It takes an array of key-value pairs, where the keys are the original
view paths to be replaced and the values are the corresponding themed view
paths. The replacement is based on partial match: if a view path starts with
any key in the yii\base\Theme::pathMap array, that matching part will be
replaced with the corresponding array value. Using the above con�guration
example, because @app/views/site/about.php partially matches the key @app/

views, it will be replaced as @app/themes/basic/site/about.php.

8.7.1 Theming Modules

In order to theme modules, yii\base\Theme::pathMap can be con�gured
like the following:

'pathMap' => [

'@app/views' => '@app/themes/basic',

'@app/modules' => '@app/themes/basic/modules', // <-- !!!

],

It will allow you to theme @app/modules/blog/views/comment/index.php into @app

/themes/basic/modules/blog/views/comment/index.php.

8.7.2 Theming Widgets

In order to theme widgets, you can con�gure yii\base\Theme::pathMap in
the following way:

'pathMap' => [

'@app/views' => '@app/themes/basic',

'@app/widgets' => '@app/themes/basic/widgets', // <-- !!!

],

This will allow you to theme @app/widgets/currency/views/index.php into @app

/themes/basic/widgets/currency/index.php.

8.7. THEMING 387

8.7.3 Theme Inheritance

Sometimes you may want to de�ne a basic theme which contains a basic
look and feel of the application, and then based on the current holiday, you
may want to vary the look and feel slightly. You can achieve this goal using
theme inheritance which is done by mapping a single view path to multiple
targets. For example,

'pathMap' => [

'@app/views' => [

'@app/themes/christmas',

'@app/themes/basic',

],

]

In this case, the view @app/views/site/index.php would be themed as either
@app/themes/christmas/site/index.php or @app/themes/basic/site/index.php, de-
pending on which themed �le exists. If both themed �les exist, the �rst one
will take precedence. In practice, you would keep most themed view �les in
@app/themes/basic and customize some of them in @app/themes/christmas.

388 CHAPTER 8. DISPLAYING DATA

Chapter 9

Security

9.1 Security

Good security is vital to the health and success of any application. Unfortu-
nately, many developers cut corners when it comes to security, either due to
a lack of understanding or because implementation is too much of a hurdle.
To make your Yii powered application as secure as possible, Yii has included
several excellent and easy to use security features.

• Authentication
• Authorization
• Working with Passwords
• Cryptography
• Views security
• Auth Clients1

• Best Practices

9.2 Authentication

Authentication is the process of verifying the identity of a user. It usually
uses an identi�er (e.g. a username or an email address) and a secret token
(e.g. a password or an access token) to judge if the user is the one whom he
claims as. Authentication is the basis of the login feature.

Yii provides an authentication framework which wires up various com-
ponents to support login. To use this framework, you mainly need to do the
following work:

• Con�gure the yii\web\User application component;
• Create a class that implements the yii\web\IdentityInterface in-
terface.

1https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide/

README.md

389

https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide/README.md
https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide/README.md

390 CHAPTER 9. SECURITY

9.2.1 Con�guring yii\web\User

The yii\web\User application component manages the user authentication
status. It requires you to specify an yii\web\User::identityClass which
contains the actual authentication logic. In the following application con�g-
uration, the yii\web\User::identityClass for yii\web\User is con�gured
to be app\models\User whose implementation is explained in the next subsec-
tion:

return [

'components' => [

'user' => [

'identityClass' => 'app\models\User',

],

],

];

9.2.2 Implementing yii\web\IdentityInterface

The yii\web\User::identityClassmust implement the yii\web\IdentityInterface
which contains the following methods:

• yii\web\IdentityInterface::findIdentity(): it looks for an in-
stance of the identity class using the speci�ed user ID. This method is
used when you need to maintain the login status via session.

• yii\web\IdentityInterface::findIdentityByAccessToken(): it looks
for an instance of the identity class using the speci�ed access token.
This method is used when you need to authenticate a user by a single
secret token (e.g. in a stateless RESTful application).

• yii\web\IdentityInterface::getId(): it returns the ID of the user
represented by this identity instance.

• yii\web\IdentityInterface::getAuthKey(): it returns a key used
to verify cookie-based login. The key is stored in the login cookie and
will be later compared with the server-side version to make sure the
login cookie is valid.

• yii\web\IdentityInterface::validateAuthKey(): it implements the
logic for verifying the cookie-based login key.

If a particular method is not needed, you may implement it with an empty
body. For example, if your application is a pure stateless RESTful applic-
ation, you would only need to implement yii\web\IdentityInterface::

findIdentityByAccessToken() and yii\web\IdentityInterface::getId()
while leaving all other methods with an empty body.

In the following example, an yii\web\User::identityClass is imple-
mented as an Active Record class associated with the user database table.

<?php

use yii\db\ActiveRecord;

9.2. AUTHENTICATION 391

use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface

{

public static function tableName()

{

return 'user';

}

/**

* Finds an identity by the given ID.

*

* @param string|int $id the ID to be looked for

* @return IdentityInterface|null the identity object that matches the

given ID.

*/

public static function findIdentity($id)

{

return static::findOne($id);

}

/**

* Finds an identity by the given token.

*

* @param string $token the token to be looked for

* @return IdentityInterface|null the identity object that matches the

given token.

*/

public static function findIdentityByAccessToken($token, $type = null)

{

return static::findOne(['access_token' => $token]);

}

/**

* @return int|string current user ID

*/

public function getId()

{

return $this->id;

}

/**

* @return string current user auth key

*/

public function getAuthKey()

{

return $this->auth_key;

}

/**

* @param string $authKey

* @return bool if auth key is valid for current user

*/

public function validateAuthKey($authKey)

392 CHAPTER 9. SECURITY

{

return $this->getAuthKey() === $authKey;

}

}

As explained previously, you only need to implement getAuthKey() and validateAuthKey

() if your application uses cookie-based login feature. In this case, you may
use the following code to generate an auth key for each user and store it in
the user table:

class User extends ActiveRecord implements IdentityInterface

{

......

public function beforeSave($insert)

{

if (parent::beforeSave($insert)) {

if ($this->isNewRecord) {

$this->auth_key = \Yii::$app->security->generateRandomString

();

}

return true;

}

return false;

}

}

Note: Do not confuse the User identity class with yii\web\User.
The former is the class implementing the authentication logic. It
is often implemented as an Active Record class associated with
some persistent storage for storing the user credential informa-
tion. The latter is an application component class responsible
for managing the user authentication state.

9.2.3 Using yii\web\User

You mainly use yii\web\User in terms of the user application component.
You can detect the identity of the current user using the expression

Yii::$app->user->identity. It returns an instance of the yii\web\User::

identityClass representing the currently logged-in user, or null if the cur-
rent user is not authenticated (meaning a guest). The following code shows
how to retrieve other authentication-related information from yii\web\User:

// the current user identity. `null` if the user is not authenticated.

$identity = Yii::$app->user->identity;

// the ID of the current user. `null` if the user not authenticated.

$id = Yii::$app->user->id;

// whether the current user is a guest (not authenticated)

$isGuest = Yii::$app->user->isGuest;

9.2. AUTHENTICATION 393

To login a user, you may use the following code:

// find a user identity with the specified username.

// note that you may want to check the password if needed

$identity = User::findOne(['username' => $username]);

// logs in the user

Yii::$app->user->login($identity);

The yii\web\User::login() method sets the identity of the current user to
the yii\web\User. If session is yii\web\User::enableSession, it will keep
the identity in the session so that the user authentication status is maintained
throughout the whole session. If cookie-based login (i.e. �remember me�
login) is yii\web\User::enableAutoLogin, it will also save the identity in
a cookie so that the user authentication status can be recovered from the
cookie as long as the cookie remains valid.

In order to enable cookie-based login, you need to con�gure yii\web

\User::enableAutoLogin to be true in the application con�guration. You
also need to provide a duration time parameter when calling the yii\web

\User::login() method.
To logout a user, simply call

Yii::$app->user->logout();

Note that logging out a user is only meaningful when session is enabled.
The method will clean up the user authentication status from both memory
and session. And by default, it will also destroy all user session data. If you
want to keep the session data, you should call Yii::$app->user->logout(false),
instead.

9.2.4 Authentication Events

The yii\web\User class raises a few events during the login and logout
processes.

• yii\web\User::EVENT_BEFORE_LOGIN: raised at the beginning of yii
\web\User::login(). If the event handler sets the yii\web\UserEvent
::isValid property of the event object to be false, the login process
will be cancelled.

• yii\web\User::EVENT_AFTER_LOGIN: raised after a successful login.
• yii\web\User::EVENT_BEFORE_LOGOUT: raised at the beginning of yii
\web\User::logout(). If the event handler sets the yii\web\UserEvent
::isValid property of the event object to be false, the logout process
will be cancelled.

• yii\web\User::EVENT_AFTER_LOGOUT: raised after a successful logout.
You may respond to these events to implement features such as login audit,
online user statistics. For example, in the handler for yii\web\User::

EVENT_AFTER_LOGIN, you may record the login time and IP address in the
user table.

394 CHAPTER 9. SECURITY

9.3 Authorization

Authorization is the process of verifying that a user has enough permission
to do something. Yii provides two authorization methods: Access Control
Filter (ACF) and Role-Based Access Control (RBAC).

9.3.1 Access Control Filter

Access Control Filter (ACF) is a simple authorization method implemented
as yii\filters\AccessControl which is best used by applications that only
need some simple access control. As its name indicates, ACF is an action
�lter that can be used in a controller or a module. While a user is requesting
to execute an action, ACF will check a list of yii\filters\AccessControl
::rules to determine if the user is allowed to access the requested action.

The code below shows how to use ACF in the site controller:

use yii\web\Controller;

use yii\filters\AccessControl;

class SiteController extends Controller

{

public function behaviors()

{

return [

'access' => [

'class' => AccessControl::className(),

'only' => ['login', 'logout', 'signup'],

'rules' => [

[

'allow' => true,

'actions' => ['login', 'signup'],

'roles' => ['?'],

],

[

'allow' => true,

'actions' => ['logout'],

'roles' => ['@'],

],

],

],

];

}

// ...

}

In the code above ACF is attached to the site controller as a behavior. This
is the typical way of using an action �lter. The only option speci�es that
the ACF should only be applied to the login, logout and signup actions. All
other actions in the site controller are not subject to the access control. The
rules option lists the yii\filters\AccessRule, which reads as follows:

9.3. AUTHORIZATION 395

• Allow all guest (not yet authenticated) users to access the login and
signup actions. The roles option contains a question mark ? which is a
special token representing �guest users�.

• Allow authenticated users to access the logout action. The @ character
is another special token representing �authenticated users�.

ACF performs the authorization check by examining the access rules one
by one from top to bottom until it �nds a rule that matches the current
execution context. The allow value of the matching rule will then be used to
judge if the user is authorized or not. If none of the rules matches, it means
the user is NOT authorized, and ACF will stop further action execution.

When ACF determines a user is not authorized to access the current
action, it takes the following measure by default:

• If the user is a guest, it will call yii\web\User::loginRequired() to
redirect the user browser to the login page.

• If the user is already authenticated, it will throw a yii\web\ForbiddenHttpException.

You may customize this behavior by con�guring the yii\filters\AccessControl
::denyCallback property like the following:

[

'class' => AccessControl::className(),

...

'denyCallback' => function ($rule, $action) {

throw new \Exception('You are not allowed to access this page');

}

]

yii\filters\AccessRule support many options. Below is a summary of
the supported options. You may also extend yii\filters\AccessRule to
create your own customized access rule classes.

• yii\filters\AccessRule::allow: speci�es whether this is an �allow�
or �deny� rule.

• yii\filters\AccessRule::actions: speci�es which actions this rule
matches. This should be an array of action IDs. The comparison is
case-sensitive. If this option is empty or not set, it means the rule
applies to all actions.

• yii\filters\AccessRule::controllers: speci�es which controllers
this rule matches. This should be an array of controller IDs. Each
controller ID is pre�xed with the module ID (if any). The comparison
is case-sensitive. If this option is empty or not set, it means the rule
applies to all controllers.

• yii\filters\AccessRule::roles: speci�es which user roles that this
rule matches. Two special roles are recognized, and they are checked
via yii\web\User::isGuest:
� ?: matches a guest user (not authenticated yet)
� @: matches an authenticated user

Using other role names will trigger the invocation of yii\web\User

396 CHAPTER 9. SECURITY

::can(), which requires enabling RBAC (to be described in the next
subsection). If this option is empty or not set, it means this rule applies
to all roles.

• yii\filters\AccessRule::ips: speci�es which yii\web\Request::

userIP this rule matches. An IP address can contain the wildcard *

at the end so that it matches IP addresses with the same pre�x. For
example, `192.168.*` matches all IP addresses in the segment `192.168.'.
If this option is empty or not set, it means this rule applies to all IP
addresses.

• yii\filters\AccessRule::verbs: speci�es which request method (e.g.
GET, POST) this rule matches. The comparison is case-insensitive.

• yii\filters\AccessRule::matchCallback: speci�es a PHP callable
that should be called to determine if this rule should be applied.

• yii\filters\AccessRule::denyCallback: speci�es a PHP callable
that should be called when this rule will deny the access.

Below is an example showing how to make use of the matchCallback option,
which allows you to write arbitrary access check logic:

use yii\filters\AccessControl;

class SiteController extends Controller

{

public function behaviors()

{

return [

'access' => [

'class' => AccessControl::className(),

'only' => ['special-callback'],

'rules' => [

[

'actions' => ['special-callback'],

'allow' => true,

'matchCallback' => function ($rule, $action) {

return date('d-m') === '31-10';

}

],

],

],

];

}

// Match callback called! This page can be accessed only each October 31

st

public function actionSpecialCallback()

{

return $this->render('happy-halloween');

}

}

9.3. AUTHORIZATION 397

9.3.2 Role Based Access Control (RBAC)

Role-Based Access Control (RBAC) provides a simple yet powerful central-
ized access control. Please refer to the Wikipedia2 for details about compar-
ing RBAC with other more traditional access control schemes.

Yii implements a General Hierarchical RBAC, following the NIST RBAC
model3. It provides the RBAC functionality through the yii\rbac\ManagerInterface
application component.

Using RBAC involves two parts of work. The �rst part is to build up the
RBAC authorization data, and the second part is to use the authorization
data to perform access check in places where it is needed.

To facilitate our description next, we will �rst introduce some basic
RBAC concepts.

Basic Concepts

A role represents a collection of permissions (e.g. creating posts, updating
posts). A role may be assigned to one or multiple users. To check if a user
has a speci�ed permission, we may check if the user is assigned with a role
that contains that permission.

Associated with each role or permission, there may be a rule. A rule
represents a piece of code that will be executed during access check to de-
termine if the corresponding role or permission applies to the current user.
For example, the �update post� permission may have a rule that checks if the
current user is the post creator. During access checking, if the user is NOT
the post creator, he/she will be considered not having the �update post�
permission.

Both roles and permissions can be organized in a hierarchy. In particular,
a role may consist of other roles or permissions; and a permission may consist
of other permissions. Yii implements a partial order hierarchy which includes
the more special tree hierarchy. While a role can contain a permission, it is
not true vice versa.

Con�guring RBAC

Before we set o� to de�ne authorization data and perform access checking,
we need to con�gure the yii\base\Application::authManager application
component. Yii provides two types of authorization managers: yii\rbac

\PhpManager and yii\rbac\DbManager. The former uses a PHP script �le
to store authorization data, while the latter stores authorization data in a
database. You may consider using the former if your application does not
require very dynamic role and permission management.

2http://en.wikipedia.org/wiki/Role-based_access_control
3http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf

http://en.wikipedia.org/wiki/Role-based_access_control
http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf

398 CHAPTER 9. SECURITY

Using PhpManager The following code shows how to con�gure the authManager
in the application con�guration using the yii\rbac\PhpManager class:

return [

// ...

'components' => [

'authManager' => [

'class' => 'yii\rbac\PhpManager',

],

// ...

],

];

The authManager can now be accessed via \Yii::$app->authManager.
By default, yii\rbac\PhpManager stores RBAC data in �les under @app

/rbac directory. Make sure the directory and all the �les in it are writable by
the Web server process if permissions hierarchy needs to be changed online.

Using DbManager The following code shows how to con�gure the authManager
in the application con�guration using the yii\rbac\DbManager class:

return [

// ...

'components' => [

'authManager' => [

'class' => 'yii\rbac\DbManager',

],

// ...

],

];

Note: If you are using yii2-basic-app template, there is a config

/console.php con�guration �le where the authManager needs to be
declared additionally to config/web.php. In case of yii2-advanced-
app the authManager should be declared only once in common/config

/main.php.

DbManager uses four database tables to store its data:
• yii\rbac\DbManager::$itemTable: the table for storing authoriza-
tion items. Defaults to �auth_item�.

• yii\rbac\DbManager::$itemChildTable: the table for storing au-
thorization item hierarchy. Defaults to �auth_item_child�.

• yii\rbac\DbManager::$assignmentTable: the table for storing au-
thorization item assignments. Defaults to �auth_assignment�.

• yii\rbac\DbManager::$ruleTable: the table for storing rules. De-
faults to �auth_rule�.

Before you can go on you need to create those tables in the database. To do
this, you can use the migration stored in @yii/rbac/migrations:

yii migrate --migrationPath=@yii/rbac/migrations

9.3. AUTHORIZATION 399

Read more about working with migrations from di�erent namespaces in
Separated Migrations section.

The authManager can now be accessed via \Yii::$app->authManager.

Building Authorization Data

Building authorization data is all about the following tasks:

• de�ning roles and permissions;
• establishing relations among roles and permissions;
• de�ning rules;
• associating rules with roles and permissions;
• assigning roles to users.

Depending on authorization �exibility requirements the tasks above could
be done in di�erent ways.

If your permissions hierarchy doesn't change at all and you have a �xed
number of users you can create a console command that will initialize au-
thorization data once via APIs o�ered by authManager:

<?php

namespace app\commands;

use Yii;

use yii\console\Controller;

class RbacController extends Controller

{

public function actionInit()

{

$auth = Yii::$app->authManager;

// add "createPost" permission

$createPost = $auth->createPermission('createPost');

$createPost->description = 'Create a post';

$auth->add($createPost);

// add "updatePost" permission

$updatePost = $auth->createPermission('updatePost');

$updatePost->description = 'Update post';

$auth->add($updatePost);

// add "author" role and give this role the "createPost" permission

$author = $auth->createRole('author');

$auth->add($author);

$auth->addChild($author, $createPost);

// add "admin" role and give this role the "updatePost" permission

// as well as the permissions of the "author" role

$admin = $auth->createRole('admin');

$auth->add($admin);

$auth->addChild($admin, $updatePost);

$auth->addChild($admin, $author);

400 CHAPTER 9. SECURITY

// Assign roles to users. 1 and 2 are IDs returned by

IdentityInterface::getId()

// usually implemented in your User model.

$auth->assign($author, 2);

$auth->assign($admin, 1);

}

}

Note: If you are using advanced template, you need to put your
RbacController inside console/controllers directory and change
namespace to console\controllers.

After executing the command with yii rbac/init we'll get the following hier-
archy:

9.3. AUTHORIZATION 401

Author can create post, admin can update post and do everything author
can.

402 CHAPTER 9. SECURITY

If your application allows user signup you need to assign roles to these
new users once. For example, in order for all signed up users to become
authors in your advanced project template you need to modify frontend\

models\SignupForm::signup() as follows:

public function signup()

{

if ($this->validate()) {

$user = new User();

$user->username = $this->username;

$user->email = $this->email;

$user->setPassword($this->password);

$user->generateAuthKey();

$user->save(false);

// the following three lines were added:

$auth = \Yii::$app->authManager;

$authorRole = $auth->getRole('author');

$auth->assign($authorRole, $user->getId());

return $user;

}

return null;

}

For applications that require complex access control with dynamically up-
dated authorization data, special user interfaces (i.e. admin panel) may need
to be developed using APIs o�ered by authManager.

Using Rules

As aforementioned, rules add additional constraint to roles and permissions.
A rule is a class extending from yii\rbac\Rule. It must implement the yii
\rbac\Rule::execute() method. In the hierarchy we've created previously
author cannot edit his own post. Let's �x it. First we need a rule to verify
that the user is the post author:

namespace app\rbac;

use yii\rbac\Rule;

/**

* Checks if authorID matches user passed via params

*/

class AuthorRule extends Rule

{

public $name = 'isAuthor';

/**

* @param string|int $user the user ID.

* @param Item $item the role or permission that this rule is associated

with

9.3. AUTHORIZATION 403

* @param array $params parameters passed to ManagerInterface::

checkAccess().

* @return bool a value indicating whether the rule permits the role or

permission it is associated with.

*/

public function execute($user, $item, $params)

{

return isset($params['post']) ? $params['post']->createdBy == $user

: false;

}

}

The rule above checks if the post is created by $user. We'll create a special
permission updateOwnPost in the command we've used previously:

$auth = Yii::$app->authManager;

// add the rule

$rule = new \app\rbac\AuthorRule;

$auth->add($rule);

// add the "updateOwnPost" permission and associate the rule with it.

$updateOwnPost = $auth->createPermission('updateOwnPost');

$updateOwnPost->description = 'Update own post';

$updateOwnPost->ruleName = $rule->name;

$auth->add($updateOwnPost);

// "updateOwnPost" will be used from "updatePost"

$auth->addChild($updateOwnPost, $updatePost);

// allow "author" to update their own posts

$auth->addChild($author, $updateOwnPost);

Now we have got the following hierarchy:

404 CHAPTER 9. SECURITY

Access Check

With the authorization data ready, access check is as simple as a call to
the yii\rbac\ManagerInterface::checkAccess() method. Because most
access check is about the current user, for convenience Yii provides a shortcut
method yii\web\User::can(), which can be used like the following:

if (\Yii::$app->user->can('createPost')) {

// create post

}

If the current user is Jane with ID=1 we are starting at createPost and trying
to get to Jane:

9.3. AUTHORIZATION 405

In order to check if a user can update a post, we need to pass an extra
parameter that is required by AuthorRule described before:

if (\Yii::$app->user->can('updatePost', ['post' => $post])) {

// update post

}

Here is what happens if the current user is John:

406 CHAPTER 9. SECURITY

We are starting with the updatePost and going through updateOwnPost. In
order to pass the access check, AuthorRule should return true from its execute

() method. The method receives its $params from the can() method call so the
value is ['post' => $post]. If everything is �ne, we will get to author which
is assigned to John.

In case of Jane it is a bit simpler since she is an admin:

9.3. AUTHORIZATION 407

Inside your controller there are a few ways to implement authorization.
If you want granular permissions that separate access to adding and deleting,
then you need to check access for each action. You can either use the above
condition in each action method, or use yii\filters\AccessControl:

public function behaviors()

{

return [

'access' => [

'class' => AccessControl::className(),

'rules' => [

[

'allow' => true,

'actions' => ['index'],

'roles' => ['managePost'],

],

[

'allow' => true,

'actions' => ['view'],

'roles' => ['viewPost'],

408 CHAPTER 9. SECURITY

],

[

'allow' => true,

'actions' => ['create'],

'roles' => ['createPost'],

],

[

'allow' => true,

'actions' => ['update'],

'roles' => ['updatePost'],

],

[

'allow' => true,

'actions' => ['delete'],

'roles' => ['deletePost'],

],

],

],

];

}

If all the CRUD operations are managed together then it's a good idea to
use a single permission, like managePost, and check it in yii\web\Controller

::beforeAction().

Using Default Roles

A default role is a role that is implicitly assigned to all users. The call to yii
\rbac\ManagerInterface::assign() is not needed, and the authorization
data does not contain its assignment information.

A default role is usually associated with a rule which determines if the
role applies to the user being checked.

Default roles are often used in applications which already have some sort
of role assignment. For example, an application may have a �group� column
in its user table to represent which privilege group each user belongs to.
If each privilege group can be mapped to an RBAC role, you can use the
default role feature to automatically assign each user to an RBAC role. Let's
use an example to show how this can be done.

Assume in the user table, you have a group column which uses 1 to rep-
resent the administrator group and 2 the author group. You plan to have
two RBAC roles admin and author to represent the permissions for these two
groups, respectively. You can set up the RBAC data as follows,

namespace app\rbac;

use Yii;

use yii\rbac\Rule;

/**

* Checks if user group matches

9.3. AUTHORIZATION 409

*/

class UserGroupRule extends Rule

{

public $name = 'userGroup';

public function execute($user, $item, $params)

{

if (!Yii::$app->user->isGuest) {

$group = Yii::$app->user->identity->group;

if ($item->name === 'admin') {

return $group == 1;

} elseif ($item->name === 'author') {

return $group == 1 || $group == 2;

}

}

return false;

}

}

$auth = Yii::$app->authManager;

$rule = new \app\rbac\UserGroupRule;

$auth->add($rule);

$author = $auth->createRole('author');

$author->ruleName = $rule->name;

$auth->add($author);

// ... add permissions as children of $author ...

$admin = $auth->createRole('admin');

$admin->ruleName = $rule->name;

$auth->add($admin);

$auth->addChild($admin, $author);

// ... add permissions as children of $admin ...

Note that in the above, because �author� is added as a child of �admin�, when
you implement the execute() method of the rule class, you need to respect
this hierarchy as well. That is why when the role name is �author�, the
execute() method will return true if the user group is either 1 or 2 (meaning
the user is in either �admin� group or �author� group).

Next, con�gure authManager by listing the two roles in yii\rbac\BaseManager
::$defaultRoles:

return [

// ...

'components' => [

'authManager' => [

'class' => 'yii\rbac\PhpManager',

'defaultRoles' => ['admin', 'author'],

],

// ...

],

];

410 CHAPTER 9. SECURITY

Now if you perform an access check, both of the admin and author roles will
be checked by evaluating the rules associated with them. If the rule returns
true, it means the role applies to the current user. Based on the above rule
implementation, this means if the group value of a user is 1, the admin role
would apply to the user; and if the group value is 2, the author role would
apply.

9.4 Working with Passwords

Most developers know that passwords cannot be stored in plain text, but
many developers believe it's still safe to hash passwords using md5 or sha1

. There was a time when using the aforementioned hashing algorithms was
su�cient, but modern hardware makes it possible to reverse such hashes and
even stronger ones very quickly using brute force attacks.

In order to provide increased security for user passwords, even in the
worst case scenario (your application is breached), you need to use a hashing
algorithm that is resilient against brute force attacks. The best current choice
is bcrypt. In PHP, you can create a bcrypt hash using the crypt function4. Yii
provides two helper functions which make using crypt to securely generate
and verify hashes easier.

When a user provides a password for the �rst time (e.g., upon registra-
tion), the password needs to be hashed:

$hash = Yii::$app->getSecurity()->generatePasswordHash($password);

The hash can then be associated with the corresponding model attribute, so
it can be stored in the database for later use.

When a user attempts to log in, the submitted password must be veri�ed
against the previously hashed and stored password:

if (Yii::$app->getSecurity()->validatePassword($password, $hash)) {

// all good, logging user in

} else {

// wrong password

}

9.5 Cryptography

In this section we'll review the following security aspects:

• Generating random data
• Encryption and Decryption
• Con�rming Data Integrity

4http://php.net/manual/en/function.crypt.php

http://php.net/manual/en/function.crypt.php

9.5. CRYPTOGRAPHY 411

9.5.1 Generating Pseudorandom Data

Pseudorandom data is useful in many situations. For example when resetting
a password via email you need to generate a token, save it to the database,
and send it via email to end user which in turn will allow them to prove
ownership of that account. It is very important that this token be unique
and hard to guess, else there is a possibility that attacker can predict the
token's value and reset the user's password.

Yii security helper makes generating pseudorandom data simple:

$key = Yii::$app->getSecurity()->generateRandomString();

9.5.2 Encryption and Decryption

Yii provides convenient helper functions that allow you to encrypt/decrypt
data using a secret key. The data is passed through the encryption function
so that only the person which has the secret key will be able to decrypt it.
For example, we need to store some information in our database but we need
to make sure only the user who has the secret key can view it (even if the
application database is compromised):

// $data and $secretKey are obtained from the form

$encryptedData = Yii::$app->getSecurity()->encryptByPassword($data,

$secretKey);

// store $encryptedData to database

Subsequently when user wants to read the data:

// $secretKey is obtained from user input, $encryptedData is from the

database

$data = Yii::$app->getSecurity()->decryptByPassword($encryptedData,

$secretKey);

It's also possible to use key instead of password via \yii\base\Security::

encryptByKey() and \yii\base\Security::decryptByKey().

9.5.3 Con�rming Data Integrity

There are situations in which you need to verify that your data hasn't been
tampered with by a third party or even corrupted in some way. Yii provides
an easy way to con�rm data integrity in the form of two helper functions.

Pre�x the data with a hash generated from the secret key and data

// $secretKey our application or user secret, $genuineData obtained from a

reliable source

$data = Yii::$app->getSecurity()->hashData($genuineData, $secretKey);

Checks if the data integrity has been compromised

// $secretKey our application or user secret, $data obtained from an

unreliable source

$data = Yii::$app->getSecurity()->validateData($data, $secretKey);

412 CHAPTER 9. SECURITY

Error: not existing �le: https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide/README.md

9.6. SECURITY BEST PRACTICES 413

9.6 Security best practices

Below we'll review common security principles and describe how to avoid
threats when developing applications using Yii.

9.6.1 Basic principles

There are two main principles when it comes to security no matter which
application is being developed:

1. Filter input.

2. Escape output.

Filter input

Filter input means that input should never be considered safe and you should
always check if the value you've got is actually among allowed ones. For ex-
ample, if we know that sorting could be done by three �elds title, created_at
and status and the �eld could be supplied via user input, it's better to check
the value we've got right where we're receiving it. In terms of basic PHP
that would look like the following:

$sortBy = $_GET['sort'];

if (!in_array($sortBy, ['title', 'created_at', 'status'])) {

throw new Exception('Invalid sort value.');

}

In Yii, most probably you'll use form validation to do alike checks.

Escape output

Escape output means that depending on context where we're using data it
should be escaped i.e. in context of HTML you should escape <, > and alike
special characters. In context of JavaScript or SQL it will be di�erent set of
characters. Since it's error-prone to escape everything manually Yii provides
various tools to perform escaping for di�erent contexts.

9.6.2 Avoiding SQL injections

SQL injection happens when query text is formed by concatenating unes-
caped strings such as the following:

$username = $_GET['username'];

$sql = "SELECT * FROM user WHERE username = '$username'";

Instead of supplying correct username attacker could give your applications
something like '; DROP TABLE user; --. Resulting SQL will be the following:

SELECT * FROM user WHERE username = ''; DROP TABLE user; --'

414 CHAPTER 9. SECURITY

This is valid query that will search for users with empty username and then
will drop user table most probably resulting in broken website and data loss
(you've set up regular backups, right?).

In Yii most of database querying happens via Active Record which prop-
erly uses PDO prepared statements internally. In case of prepared statements
it's not possible to manipulate query as was demonstrated above.

Still, sometimes you need raw queries or query builder. In this case you
should use safe ways of passing data. If data is used for column values it's
preferred to use prepared statements:

// query builder

$userIDs = (new Query())

->select('id')

->from('user')

->where('status=:status', [':status' => $status])

->all();

// DAO

$userIDs = $connection

->createCommand('SELECT id FROM user where status=:status')

->bindValues([':status' => $status])

->queryColumn();

If data is used to specify column names or table names the best thing to do
is to allow only prede�ned set of values:

function actionList($orderBy = null)

{

if (!in_array($orderBy, ['name', 'status'])) {

throw new BadRequestHttpException('Only name and status are allowed

to order by.')

}

// ...

}

In case it's not possible, table and column names should be escaped. Yii has
special syntax for such escaping which allows doing it the same way for all
databases it supports:

$sql = "SELECT COUNT([[$column]]) FROM {{table}}";

$rowCount = $connection->createCommand($sql)->queryScalar();

You can get details about the syntax in Quoting Table and Column Names.

9.6.3 Avoiding XSS

XSS or cross-site scripting happens when output isn't escaped properly when
outputting HTML to the browser. For example, if user can enter his name
and instead of Alexander he enters <script>alert('Hello!');</script>, every
page that outputs user name without escaping it will execute JavaScript
alert('Hello!'); resulting in alert box popping up in a browser. Depending

9.6. SECURITY BEST PRACTICES 415

on website instead of innocent alert such script could send messages using
your name or even perform bank transactions.

Avoiding XSS is quite easy in Yii. There are generally two cases:

1. You want data to be outputted as plain text.

2. You want data to be outputted as HTML.

If all you need is plain text then escaping is as easy as the following:

<?= \yii\helpers\Html::encode($username) ?>

If it should be HTML we could get some help from HtmlPuri�er:

<?= \yii\helpers\HtmlPurifier::process($description) ?>

Note that HtmlPuri�er processing is quite heavy so consider adding caching.

9.6.4 Avoiding CSRF

CSRF is an abbreviation for cross-site request forgery. The idea is that many
applications assume that requests coming from a user browser are made by
the user himself. It could be false.

For example, an.example.com website has /logout URL that, when accessed
using a simple GET, logs user out. As long as it's requested by the user itself
everything is OK but one day bad guys are somehow posting <img src="http

://an.example.com/logout"> on a forum user visits frequently. Browser doesn't
make any di�erence between requesting an image or requesting a page so
when user opens a page with such img tag, the browser will send the GET
request to that URL, and the user will be logged out from an.example.com.

That's the basic idea. One can say that logging user out is nothing seri-
ous, but bad guys can do much more, using this idea. Imagine that some web-
site has an URL http://an.example.com/purse/transfer?to=anotherUser&amount

=2000. Accessing it using GET request, causes transfer of $2000 from author-
ized user account to user anotherUser. We know, that browser will always
send GET request to load an image, so we can modify code to accept only
POST requests on that URL. Unfortunately, this will not save us, because
an attacker can put some JavaScript code instead of tag, which allows
to send POST requests on that URL.

In order to avoid CSRF you should always:

1. Follow HTTP speci�cation i.e. GET should not change application
state.

2. Keep Yii CSRF protection enabled.

Sometimes you need to disable CSRF validation per controller and/or action.
It could be achieved by setting its property:

416 CHAPTER 9. SECURITY

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller

{

public $enableCsrfValidation = false;

public function actionIndex()

{

// CSRF validation will not be applied to this and other actions

}

}

To disable CSRF validation per custom actions you can do:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller

{

public function beforeAction($action)

{

// ...set `$this->enableCsrfValidation` here based on some

conditions...

// call parent method that will check CSRF if such property is `true

`.

return parent::beforeAction($action);

}

}

9.6.5 Avoiding �le exposure

By default server webroot is meant to be pointed to web directory where
index.php is. In case of shared hosting environments it could be impossible
to achieve so we'll end up with all the code, con�gs and logs in server webroot.

If it's the case don't forget to deny access to everything except web. If it
can't be done consider hosting your application elsewhere.

9.6.6 Avoiding debug info and tools at production

In debug mode Yii shows quite verbose errors which are certainly helpful for
development. The thing is that these verbose errors are handy for attacker
as well since these could reveal database structure, con�guration values and
parts of your code. Never run production applications with YII_DEBUG set to
true in your index.php.

You should never enable Gii at production. It could be used to get
information about database structure, code and to simply rewrite code with
what's generated by Gii.

9.6. SECURITY BEST PRACTICES 417

Debug toolbar should be avoided at production unless really necessary.
It exposes all the application and con�g details possible. If you absolutely
need it check twice that access is properly restricted to your IP only.

9.6.7 Using secure connection over TLS

Yii provides features that rely on cookies and/or PHP sessions. These can
be vulnerable in case your connection is compromised. The risk is reduced
if the app uses secure connection via TLS.

Please refer to your webserver documentation for instructions on how to
con�gure it. You may also check example con�gs provided by H5BP project:

• Nginx5

• Apache6.
• IIS7.
• Lighttpd8.

9.6.8 Secure Server con�guration

The purpose of this section is to highlight risks that need to be considered
when creating a server con�guration for serving a Yii based website. Besides
the points covered here there may be other security related con�guration
options to be considered, so do not consider this section to be complete.

Avoiding Host-header attacks

Classes like yii\web\UrlManager and yii\helpers\Url may use the yii

\web\Request::getHostInfo() for generating links. If the webserver is con-
�gured to serve the same site independent of the value of the Host header,
this information may not be reliable and may be faked by the user sending
the HTTP request9. In such situations you should either �x your webserver
con�guration to serve the site only for speci�ed host names or explicitly set or
�lter the value by setting the yii\web\Request::setHostInfo() property
of the request application component.

For more information about the server con�guration, please refer to the
documentation of your webserver:

• Apache 2: http://httpd.apache.org/docs/trunk/vhosts/examples.
html#defaultallports

• Nginx: https://www.nginx.com/resources/wiki/start/topics/examples/
server_blocks/

5https://github.com/h5bp/server-configs-nginx
6https://github.com/h5bp/server-configs-apache
7https://github.com/h5bp/server-configs-iis
8https://github.com/h5bp/server-configs-lighttpd
9https://www.acunetix.com/vulnerabilities/web/host-header-attack

http://httpd.apache.org/docs/trunk/vhosts/examples.html#defaultallports
http://httpd.apache.org/docs/trunk/vhosts/examples.html#defaultallports
https://www.nginx.com/resources/wiki/start/topics/examples/server_blocks/
https://www.nginx.com/resources/wiki/start/topics/examples/server_blocks/
https://github.com/h5bp/server-configs-nginx
https://github.com/h5bp/server-configs-apache
https://github.com/h5bp/server-configs-iis
https://github.com/h5bp/server-configs-lighttpd
https://www.acunetix.com/vulnerabilities/web/host-header-attack

418 CHAPTER 9. SECURITY

If you don't have access to the server con�guration, you can setup yii

\filters\HostControl �lter at application level in order to protect against
such kind of attack:

// Web Application configuration file

return [

'as hostControl' => [

'class' => 'yii\filters\HostControl',

'allowedHosts' => [

'example.com',

'*.example.com',

],

'fallbackHostInfo' => 'https://example.com',

],

// ...

];

Note: you should always prefer web server con�guration for
`host header attack' protection instead of the �lter usage. yii

\filters\HostControl should be used only if server con�gura-
tion setup is unavailable.

Chapter 10

Caching

10.1 Caching

Caching is a cheap and e�ective way to improve the performance of a Web
application. By storing relatively static data in cache and serving it from
cache when requested, the application saves the time that would be required
to generate the data from scratch every time.

Caching can occur at di�erent levels and places in a Web application.
On the server-side, at the lower level, cache may be used to store basic data,
such as a list of most recent article information fetched from database; and
at the higher level, cache may be used to store fragments or whole of Web
pages, such as the rendering result of the most recent articles. On the client-
side, HTTP caching may be used to keep most recently visited page content
in the browser cache.

Yii supports all these caching mechanisms:
• Data caching
• Fragment caching
• Page caching
• HTTP caching

10.2 Data Caching

Data caching is about storing some PHP variables in cache and retrieving
it later from cache. It is also the foundation for more advanced caching
features, such as query caching and page caching.

The following code is a typical usage pattern of data caching, where
$cache refers to a cache component:

// try retrieving $data from cache

$data = $cache->get($key);

if ($data === false) {

// $data is not found in cache, calculate it from scratch

419

420 CHAPTER 10. CACHING

$data = $this->calculateSomething();

// store $data in cache so that it can be retrieved next time

$cache->set($key, $data);

}

// $data is available here

Since version 2.0.11, cache component provides yii\caching\Cache::getOrSet()
method that simpli�es code for data getting, calculating and storing. The
following code does exactly the same as the previous example:

$data = $cache->getOrSet($key, function () {

return $this->calculateSomething();

});

When cache has data associated with the $key, the cached value will be
returned. Otherwise, the passed anonymous function will be executed to
calculate the value that will be cached and returned.

If the anonymous function requires some data from the outer scope, you
can pass it with the use statement. For example:

$user_id = 42;

$data = $cache->getOrSet($key, function () use ($user_id) {

return $this->calculateSomething($user_id);

});

Note: yii\caching\Cache::getOrSet() method supports dur-
ation and dependencies as well. See Cache Expiration and Cache
Dependencies to know more.

10.2.1 Cache Components

Data caching relies on the so-called cache components which represent vari-
ous cache storage, such as memory, �les, databases.

Cache components are usually registered as application components so
that they can be globally con�gurable and accessible. The following code
shows how to con�gure the cache application component to use memcached1

with two cache servers:

'components' => [

'cache' => [

'class' => 'yii\caching\MemCache',

'servers' => [

[

'host' => 'server1',

'port' => 11211,

'weight' => 100,

],

[

1http://memcached.org/

http://memcached.org/

10.2. DATA CACHING 421

'host' => 'server2',

'port' => 11211,

'weight' => 50,

],

],

],

],

You can then access the above cache component using the expression Yii::

$app->cache.

Because all cache components support the same set of APIs, you can
swap the underlying cache component with a di�erent one by recon�guring
it in the application con�guration without modifying the code that uses the
cache. For example, you can modify the above con�guration to use yii

\caching\ApcCache:

'components' => [

'cache' => [

'class' => 'yii\caching\ApcCache',

],

],

Tip: You can register multiple cache application components.
The component named cache is used by default by many cache-
dependent classes (e.g. yii\web\UrlManager).

Supported Cache Storage

Yii supports a wide range of cache storage. The following is a summary:

• yii\caching\ApcCache: uses PHP APC2 extension. This option can
be considered as the fastest one when dealing with cache for a cent-
ralized thick application (e.g. one server, no dedicated load balancers,
etc.).

• yii\caching\DbCache: uses a database table to store cached data. To
use this cache, you must create a table as speci�ed in yii\caching

\DbCache::cacheTable.
• yii\caching\DummyCache: serves as a cache placeholder which does
no real caching. The purpose of this component is to simplify the
code that needs to check the availability of cache. For example, during
development or if the server doesn't have actual cache support, you
may con�gure a cache component to use this cache. When an actual
cache support is enabled, you can switch to use the corresponding
cache component. In both cases, you may use the same code Yii::$app

->cache->get($key) to attempt retrieving data from the cache without
worrying that Yii::$app->cache might be null.

2http://php.net/manual/en/book.apc.php

http://php.net/manual/en/book.apc.php

422 CHAPTER 10. CACHING

• yii\caching\FileCache: uses standard �les to store cached data.
This is particularly suitable to cache large chunk of data, such as page
content.

• yii\caching\MemCache: uses PHP memcache3 and memcached4 ex-
tensions. This option can be considered as the fastest one when dealing
with cache in a distributed applications (e.g. with several servers, load
balancers, etc.)

• yii\redis\Cache: implements a cache component based on Redis5

key-value store (redis version 2.6.12 or higher is required).
• yii\caching\WinCache: uses PHP WinCache6 (see also7) extension.
• yii\caching\XCache: uses PHP XCache8 extension.
• Zend Data Cache9 as the underlying caching medium.

Tip: You may use di�erent cache storage in the same applica-
tion. A common strategy is to use memory-based cache storage
to store data that is small but constantly used (e.g. statistical
data), and use �le-based or database-based cache storage to store
data that is big and less frequently used (e.g. page content).

10.2.2 Cache APIs

All cache components have the same base class yii\caching\Cache and thus
support the following APIs:

• yii\caching\Cache::get(): retrieves a data item from cache with a
speci�ed key. A false value will be returned if the data item is not
found in the cache or is expired/invalidated.

• yii\caching\Cache::set(): stores a data item identi�ed by a key in
cache.

• yii\caching\Cache::add(): stores a data item identi�ed by a key in
cache if the key is not found in the cache.

• yii\caching\Cache::getOrSet(): retrieves a data item from cache
with a speci�ed key or executes passed callback, stores return of the
callback in a cache by a key and returns that data.

• yii\caching\Cache::multiGet(): retrieves multiple data items from
cache with the speci�ed keys.

• yii\caching\Cache::multiSet(): stores multiple data items in cache.
Each item is identi�ed by a key.

3http://php.net/manual/en/book.memcache.php
4http://php.net/manual/en/book.memcached.php
5http://redis.io/
6http://iis.net/downloads/microsoft/wincache-extension
7http://php.net/manual/en/book.wincache.php
8http://xcache.lighttpd.net/
9http://files.zend.com/help/Zend-Server-6/zend-server.htm#data_cache_

component.htm

http://php.net/manual/en/book.memcache.php
http://php.net/manual/en/book.memcached.php
http://redis.io/
http://iis.net/downloads/microsoft/wincache-extension
http://php.net/manual/en/book.wincache.php
http://xcache.lighttpd.net/
http://files.zend.com/help/Zend-Server-6/zend-server.htm#data_cache_component.htm
http://files.zend.com/help/Zend-Server-6/zend-server.htm#data_cache_component.htm

10.2. DATA CACHING 423

• yii\caching\Cache::multiAdd(): stores multiple data items in cache.
Each item is identi�ed by a key. If a key already exists in the cache,
the data item will be skipped.

• yii\caching\Cache::exists(): returns a value indicating whether
the speci�ed key is found in the cache.

• yii\caching\Cache::delete(): removes a data item identi�ed by a
key from the cache.

• yii\caching\Cache::flush(): removes all data items from the cache.

Note: Do not cache a false boolean value directly because the
yii\caching\Cache::get() method uses false return value to
indicate the data item is not found in the cache. You may put
false in an array and cache this array instead to avoid this prob-
lem.

Some cache storage, such as MemCache, APC, support retrieving multiple
cached values in a batch mode, which may reduce the overhead involved
in retrieving cached data. The APIs yii\caching\Cache::multiGet() and
yii\caching\Cache::multiAdd() are provided to exploit this feature. In
case the underlying cache storage does not support this feature, it will be
simulated.

Because yii\caching\Cache implements ArrayAccess, a cache component
can be used like an array. The following are some examples:

$cache['var1'] = $value1; // equivalent to: $cache->set('var1', $value1);

$value2 = $cache['var2']; // equivalent to: $value2 = $cache->get('var2');

Cache Keys

Each data item stored in cache is uniquely identi�ed by a key. When you
store a data item in cache, you have to specify a key for it. Later when you
retrieve the data item from cache, you should provide the corresponding key.

You may use a string or an arbitrary value as a cache key. When a key
is not a string, it will be automatically serialized into a string.

A common strategy of de�ning a cache key is to include all determining
factors in terms of an array. For example, yii\db\Schema uses the following
key to cache schema information about a database table:

[

__CLASS__, // schema class name

$this->db->dsn, // DB connection data source name

$this->db->username, // DB connection login user

$name, // table name

];

As you can see, the key includes all necessary information needed to uniquely
specify a database table.

424 CHAPTER 10. CACHING

Note: Values stored in cache via yii\caching\Cache::multiSet()
or yii\caching\Cache::multiAdd() can have only string or in-
teger keys. If you need to set more complex key store the value
separately via yii\caching\Cache::set() or yii\caching\Cache
::add().

When the same cache storage is used by di�erent applications, you should
specify a unique cache key pre�x for each application to avoid con�icts of
cache keys. This can be done by con�guring the yii\caching\Cache::

keyPrefix property. For example, in the application con�guration you can
write the following code:

'components' => [

'cache' => [

'class' => 'yii\caching\ApcCache',

'keyPrefix' => 'myapp', // a unique cache key prefix

],

],

To ensure interoperability, only alphanumeric characters should be used.

Cache Expiration

A data item stored in a cache will remain there forever unless it is removed
because of some caching policy enforcement (e.g. caching space is full and
the oldest data are removed). To change this behavior, you can provide an
expiration parameter when calling yii\caching\Cache::set() to store a
data item. The parameter indicates for how many seconds the data item
can remain valid in the cache. When you call yii\caching\Cache::get()
to retrieve the data item, if it has passed the expiration time, the method
will return false, indicating the data item is not found in the cache. For
example,

// keep the data in cache for at most 45 seconds

$cache->set($key, $data, 45);

sleep(50);

$data = $cache->get($key);

if ($data === false) {

// $data is expired or is not found in the cache

}

Since 2.0.11 you may set yii\caching\Cache::$defaultDuration value in
your cache component con�guration if you prefer a custom cache duration
over the default unlimited duration. This will allow you not to pass custom
duration parameter to yii\caching\Cache::set() each time.

10.2. DATA CACHING 425

Cache Dependencies

Besides expiration setting, cached data item may also be invalidated by
changes of the so-called cache dependencies. For example, yii\caching

\FileDependency represents the dependency of a �le's modi�cation time.
When this dependency changes, it means the corresponding �le is modi�ed.
As a result, any outdated �le content found in the cache should be invalidated
and the yii\caching\Cache::get() call should return false.

Cache dependencies are represented as objects of yii\caching\Dependency
descendant classes. When you call yii\caching\Cache::set() to store a
data item in the cache, you can pass along an associated cache dependency
object. For example,

// Create a dependency on the modification time of file example.txt.

$dependency = new \yii\caching\FileDependency(['fileName' => 'example.txt'])

;

// The data will expire in 30 seconds.

// It may also be invalidated earlier if example.txt is modified.

$cache->set($key, $data, 30, $dependency);

// The cache will check if the data has expired.

// It will also check if the associated dependency was changed.

// It will return false if any of these conditions are met.

$data = $cache->get($key);

Below is a summary of the available cache dependencies:
• yii\caching\ChainedDependency: the dependency is changed if any
of the dependencies on the chain is changed.

• yii\caching\DbDependency: the dependency is changed if the query
result of the speci�ed SQL statement is changed.

• yii\caching\ExpressionDependency: the dependency is changed if
the result of the speci�ed PHP expression is changed.

• yii\caching\FileDependency: the dependency is changed if the �le's
last modi�cation time is changed.

• yii\caching\TagDependency: associates a cached data item with one
or multiple tags. You may invalidate the cached data items with the
speci�ed tag(s) by calling yii\caching\TagDependency::invalidate().

Note: Avoid using yii\caching\Cache::exists()method along
with dependencies. It does not check whether the dependency as-
sociated with the cached data, if there is any, has changed. So a
call to yii\caching\Cache::get() may return false while yii

\caching\Cache::exists() returns true.

10.2.3 Query Caching

Query caching is a special caching feature built on top of data caching. It is
provided to cache the result of database queries.

426 CHAPTER 10. CACHING

Query caching requires a yii\db\Connection and a valid cache applic-
ation component. The basic usage of query caching is as follows, assuming
$db is a yii\db\Connection instance:

$result = $db->cache(function ($db) {

// the result of the SQL query will be served from the cache

// if query caching is enabled and the query result is found in the

cache

return $db->createCommand('SELECT * FROM customer WHERE id=1')->queryOne

();

});

Query caching can be used for DAO as well as ActiveRecord:

$result = Customer::getDb()->cache(function ($db) {

return Customer::find()->where(['id' => 1])->one();

});

Info: Some DBMS (e.g. MySQL10) also support query cach-
ing on the DB server-side. You may choose to use either query
caching mechanism. The query caching described above has the
advantage that you may specify �exible cache dependencies and
are potentially more e�cient.

Cache Flushing

When you need to invalidate all the stored cache data, you can call yii
\caching\Cache::flush().

You can �ush the cache from the console by calling yii cache/flush as
well.

• yii cache: lists the available caches in application
• yii cache/flush cache1 cache2: �ushes the cache components cache1,

cache2 (you can pass multiple component names separated with space)
• yii cache/flush-all: �ushes all cache components in the application

Info: Console application uses a separate con�guration �le by
default. Ensure, that you have the same caching components
in your web and console application con�gs to reach the proper
e�ect.

Con�gurations

Query caching has three global con�gurable options through yii\db\Connection:

10http://dev.mysql.com/doc/refman/5.1/en/query-cache.html

http://dev.mysql.com/doc/refman/5.1/en/query-cache.html

10.2. DATA CACHING 427

• yii\db\Connection::enableQueryCache: whether to turn on or o�
query caching. It defaults to true. Note that to e�ectively turn on
query caching, you also need to have a valid cache, as speci�ed by yii

\db\Connection::queryCache.
• yii\db\Connection::queryCacheDuration: this represents the num-
ber of seconds that a query result can remain valid in the cache. You
can use 0 to indicate a query result should remain in the cache forever.
This property is the default value used when yii\db\Connection::

cache() is called without specifying a duration.
• yii\db\Connection::queryCache: this represents the ID of the cache
application component. It defaults to 'cache'. Query caching is en-
abled only if there is a valid cache application component.

Usages

You can use yii\db\Connection::cache() if you have multiple SQL queries
that need to take advantage of query caching. The usage is as follows,

$duration = 60; // cache query results for 60 seconds.

$dependency = ...; // optional dependency

$result = $db->cache(function ($db) {

// ... perform SQL queries here ...

return $result;

}, $duration, $dependency);

Any SQL queries in the anonymous function will be cached for the speci�ed
duration with the speci�ed dependency. If the result of a query is found
valid in the cache, the query will be skipped and the result will be served
from the cache instead. If you do not specify the $duration parameter, the
value of yii\db\Connection::queryCacheDuration will be used instead.

Sometimes within cache(), you may want to disable query caching for
some particular queries. You can use yii\db\Connection::noCache() in
this case.

$result = $db->cache(function ($db) {

// SQL queries that use query caching

$db->noCache(function ($db) {

// SQL queries that do not use query caching

});

// ...

428 CHAPTER 10. CACHING

return $result;

});

If you just want to use query caching for a single query, you can call yii\db
\Command::cache() when building the command. For example,

// use query caching and set query cache duration to be 60 seconds

$customer = $db->createCommand('SELECT * FROM customer WHERE id=1')->cache

(60)->queryOne();

You can also use yii\db\Command::noCache() to disable query caching for
a single command. For example,

$result = $db->cache(function ($db) {

// SQL queries that use query caching

// do not use query caching for this command

$customer = $db->createCommand('SELECT * FROM customer WHERE id=1')->

noCache()->queryOne();

// ...

return $result;

});

Limitations

Query caching does not work with query results that contain resource hand-
lers. For example, when using the BLOB column type in some DBMS, the
query result will return a resource handler for the column data.

Some caching storage has size limitation. For example, memcache limits
the maximum size of each entry to be 1MB. Therefore, if the size of a query
result exceeds this limit, the caching will fail.

10.3 Fragment Caching

Fragment caching refers to caching a fragment of a Web page. For example,
if a page displays a summary of yearly sale in a table, you can store this
table in cache to eliminate the time needed to generate this table for each
request. Fragment caching is built on top of data caching.

To use fragment caching, use the following construct in a view:

if ($this->beginCache($id)) {

// ... generate content here ...

$this->endCache();

}

10.3. FRAGMENT CACHING 429

That is, enclose content generation logic in a pair of yii\base\View::

beginCache() and yii\base\View::endCache() calls. If the content is
found in the cache, yii\base\View::beginCache() will render the cached
content and return false, thus skip the content generation logic. Otherwise,
your content generation logic will be called, and when yii\base\View::

endCache() is called, the generated content will be captured and stored in
the cache.

Like data caching, a unique $id is needed to identify a content cache.

10.3.1 Caching Options

You may specify additional options about fragment caching by passing the
option array as the second parameter to the yii\base\View::beginCache()
method. Behind the scene, this option array will be used to con�gure a
yii\widgets\FragmentCache widget which implements the actual fragment
caching functionality.

Duration

Perhaps the most commonly used option of fragment caching is yii\widgets
\FragmentCache::duration. It speci�es for how many seconds the content
can remain valid in a cache. The following code caches the content fragment
for at most one hour:

if ($this->beginCache($id, ['duration' => 3600])) {

// ... generate content here ...

$this->endCache();

}

If the option is not set, it will take the default value 60, which means the
cached content will expire in 60 seconds.

Dependencies

Like data caching, content fragment being cached can also have dependen-
cies. For example, the content of a post being displayed depends on whether
or not the post is modi�ed.

To specify a dependency, set the yii\widgets\FragmentCache::dependency
option, which can be either an yii\caching\Dependency object or a con�g-
uration array for creating a dependency object. The following code speci�es
that the fragment content depends on the change of the updated_at column
value:

$dependency = [

'class' => 'yii\caching\DbDependency',

'sql' => 'SELECT MAX(updated_at) FROM post',

430 CHAPTER 10. CACHING

];

if ($this->beginCache($id, ['dependency' => $dependency])) {

// ... generate content here ...

$this->endCache();

}

Variations

Content being cached may be variated according to some parameters. For
example, for a Web application supporting multiple languages, the same
piece of view code may generate the content in di�erent languages. There-
fore, you may want to make the cached content variated according to the
current application language.

To specify cache variations, set the yii\widgets\FragmentCache::variations
option, which should be an array of scalar values, each representing a par-
ticular variation factor. For example, to make the cached content variated
by the language, you may use the following code:

if ($this->beginCache($id, ['variations' => [Yii::$app->language]])) {

// ... generate content here ...

$this->endCache();

}

Toggling Caching

Sometimes you may want to enable fragment caching only when certain
conditions are met. For example, for a page displaying a form, you only
want to cache the form when it is initially requested (via GET request).
Any subsequent display (via POST request) of the form should not be cached
because the form may contain user input. To do so, you may set the yii

\widgets\FragmentCache::enabled option, like the following:

if ($this->beginCache($id, ['enabled' => Yii::$app->request->isGet])) {

// ... generate content here ...

$this->endCache();

}

10.3.2 Nested Caching

Fragment caching can be nested. That is, a cached fragment can be enclosed
within another fragment which is also cached. For example, the comments

10.3. FRAGMENT CACHING 431

are cached in an inner fragment cache, and they are cached together with
the post content in an outer fragment cache. The following code shows how
two fragment caches can be nested:

if ($this->beginCache($id1)) {

// ...content generation logic...

if ($this->beginCache($id2, $options2)) {

// ...content generation logic...

$this->endCache();

}

// ...content generation logic...

$this->endCache();

}

Di�erent caching options can be set for the nested caches. For example, the
inner caches and the outer caches can use di�erent cache duration values.
Even when the data cached in the outer cache is invalidated, the inner cache
may still provide the valid inner fragment. However, it is not true vice versa.
If the outer cache is evaluated to be valid, it will continue to provide the same
cached copy even after the content in the inner cache has been invalidated.
Therefore, you must be careful in setting the durations or the dependencies
of the nested caches, otherwise the outdated inner fragments may be kept in
the outer fragment.

10.3.3 Dynamic Content

When using fragment caching, you may encounter the situation where a large
fragment of content is relatively static except at one or a few places. For
example, a page header may display the main menu bar together with the
name of the current user. Another problem is that the content being cached
may contain PHP code that must be executed for every request (e.g. the
code for registering an asset bundle). Both problems can be solved by the
so-called dynamic content feature.

A dynamic content means a fragment of output that should not be cached
even if it is enclosed within a fragment cache. To make the content dynamic
all the time, it has to be generated by executing some PHP code for every
request, even if the enclosing content is being served from cache.

You may call yii\base\View::renderDynamic() within a cached frag-
ment to insert dynamic content at the desired place, like the following,

if ($this->beginCache($id1)) {

// ...content generation logic...

432 CHAPTER 10. CACHING

echo $this->renderDynamic('return Yii::$app->user->identity->name;');

// ...content generation logic...

$this->endCache();

}

The yii\base\View::renderDynamic() method takes a piece of PHP code
as its parameter. The return value of the PHP code is treated as the dynamic
content. The same PHP code will be executed for every request, no matter
the enclosing fragment is being served from cached or not.

10.4 Page Caching

Page caching refers to caching the content of a whole page on the server-side.
Later when the same page is requested again, its content will be served from
the cache instead of regenerating it from scratch.

Page caching is supported by yii\filters\PageCache, an action �lter.
It can be used like the following in a controller class:

public function behaviors()

{

return [

[

'class' => 'yii\filters\PageCache',

'only' => ['index'],

'duration' => 60,

'variations' => [

\Yii::$app->language,

],

'dependency' => [

'class' => 'yii\caching\DbDependency',

'sql' => 'SELECT COUNT(*) FROM post',

],

],

];

}

The above code states that page caching should be used only for the index

action. The page content should be cached for at most 60 seconds and should
be variated by the current application language and the cached page should
be invalidated if the total number of posts is changed.

As you can see, page caching is very similar to fragment caching. They
both support options such as duration, dependencies, variations, and enabled.
Their main di�erence is that page caching is implemented as an action �lter
while fragment caching a widget.

You can use fragment caching as well as dynamic content together with
page caching.

10.5. HTTP CACHING 433

10.5 HTTP Caching

Besides server-side caching that we have described in the previous sections,
Web applications may also exploit client-side caching to save the time for
generating and transmitting the same page content.

To use client-side caching, you may con�gure yii\filters\HttpCache

as a �lter for controller actions whose rendering result may be cached on the
client-side. yii\filters\HttpCache only works for GET and HEAD requests.
It can handle three kinds of cache-related HTTP headers for these requests:

• yii\filters\HttpCache::lastModified

• yii\filters\HttpCache::etagSeed

• yii\filters\HttpCache::cacheControlHeader

10.5.1 Last-Modified Header

The Last-Modified header uses a timestamp to indicate if the page has been
modi�ed since the client caches it.

You may con�gure the yii\filters\HttpCache::lastModified prop-
erty to enable sending the Last-Modified header. The property should be
a PHP callable returning a UNIX timestamp about the page modi�cation
time. The signature of the PHP callable should be as follows,

/**

* @param Action $action the action object that is being handled currently

* @param array $params the value of the "params" property

* @return int a UNIX timestamp representing the page modification time

*/

function ($action, $params)

The following is an example of making use of the Last-Modified header:

public function behaviors()

{

return [

[

'class' => 'yii\filters\HttpCache',

'only' => ['index'],

'lastModified' => function ($action, $params) {

$q = new \yii\db\Query();

return $q->from('post')->max('updated_at');

},

],

];

}

The above code states that HTTP caching should be enabled for the index

action only. It should generate a Last-Modified HTTP header based on the
last update time of posts. When a browser visits the index page for the �rst
time, the page will be generated on the server and sent to the browser; If the
browser visits the same page again and there is no post being modi�ed during

434 CHAPTER 10. CACHING

the period, the server will not re-generate the page, and the browser will use
the cached version on the client-side. As a result, server-side rendering and
page content transmission are both skipped.

10.5.2 ETag Header

The �Entity Tag� (or ETag for short) header use a hash to represent the
content of a page. If the page is changed, the hash will be changed as well.
By comparing the hash kept on the client-side with the hash generated on
the server-side, the cache may determine whether the page has been changed
and should be re-transmitted.

You may con�gure the yii\filters\HttpCache::etagSeed property to
enable sending the ETag header. The property should be a PHP callable
returning a seed for generating the ETag hash. The signature of the PHP
callable should be as follows,

/**

* @param Action $action the action object that is being handled currently

* @param array $params the value of the "params" property

* @return string a string used as the seed for generating an ETag hash

*/

function ($action, $params)

The following is an example of making use of the ETag header:

public function behaviors()

{

return [

[

'class' => 'yii\filters\HttpCache',

'only' => ['view'],

'etagSeed' => function ($action, $params) {

$post = $this->findModel(\Yii::$app->request->get('id'));

return serialize([$post->title, $post->content]);

},

],

];

}

The above code states that HTTP caching should be enabled for the view

action only. It should generate an ETag HTTP header based on the title and
content of the requested post. When a browser visits the view page for the
�rst time, the page will be generated on the server and sent to the browser;
If the browser visits the same page again and there is no change to the title
and content of the post, the server will not re-generate the page, and the
browser will use the cached version on the client-side. As a result, server-side
rendering and page content transmission are both skipped.

ETags allow more complex and/or more precise caching strategies than
Last-Modified headers. For instance, an ETag can be invalidated if the site
has switched to another theme.

10.5. HTTP CACHING 435

Expensive ETag generation may defeat the purpose of using HttpCache

and introduce unnecessary overhead, since they need to be re-evaluated on
every request. Try to �nd a simple expression that invalidates the cache if
the page content has been modi�ed.

Note: In compliance to RFC 723211, HttpCache will send out
both ETag and Last-Modified headers if they are both con�gured.
And if the client sends both of the If-None-Match header and the
If-Modified-Since header, only the former will be respected.

10.5.3 Cache-Control Header

The Cache-Control header speci�es the general caching policy for pages. You
may send it by con�guring the yii\filters\HttpCache::cacheControlHeader
property with the header value. By default, the following header will be sent:

Cache-Control: public, max-age=3600

10.5.4 Session Cache Limiter

When a page uses session, PHP will automatically send some cache-related
HTTP headers as speci�ed in the session.cache_limiter PHP INI setting.
These headers may interfere or disable the caching that you want from
HttpCache. To prevent this problem, by default HttpCache will disable sending
these headers automatically. If you want to change this behavior, you should
con�gure the yii\filters\HttpCache::sessionCacheLimiter property. The
property can take a string value, including public, private, private_no_expire,
and nocache. Please refer to the PHPmanual about session_cache_limiter()12

for explanations about these values.

10.5.5 SEO Implications

Search engine bots tend to respect cache headers. Since some crawlers have
a limit on how many pages per domain they process within a certain time
span, introducing caching headers may help indexing your site as they reduce
the number of pages that need to be processed.

11http://tools.ietf.org/html/rfc7232#section-2.4
12http://www.php.net/manual/en/function.session-cache-limiter.php

http://tools.ietf.org/html/rfc7232#section-2.4
http://www.php.net/manual/en/function.session-cache-limiter.php

436 CHAPTER 10. CACHING

Chapter 11

RESTful Web Services

11.1 Quick Start

Yii provides a whole set of tools to simplify the task of implementing RESTful
Web Service APIs. In particular, Yii supports the following features about
RESTful APIs:

• Quick prototyping with support for common APIs for Active Record;
• Response format negotiation (supporting JSON and XML by default);
• Customizable object serialization with support for selectable output
�elds;

• Proper formatting of collection data and validation errors;
• Support for HATEOAS1;
• E�cient routing with proper HTTP verb check;
• Built-in support for the OPTIONS and HEAD verbs;
• Authentication and authorization;
• Data caching and HTTP caching;
• Rate limiting;

In the following, we use an example to illustrate how you can build a set of
RESTful APIs with some minimal coding e�ort.

Assume you want to expose the user data via RESTful APIs. The user
data are stored in the user DB table, and you have already created the active
record class app\models\User to access the user data.

11.1.1 Creating a Controller

First, create a controller class app\controllers\UserController as follows:

namespace app\controllers;

use yii\rest\ActiveController;

class UserController extends ActiveController

1http://en.wikipedia.org/wiki/HATEOAS

437

http://en.wikipedia.org/wiki/HATEOAS

438 CHAPTER 11. RESTFUL WEB SERVICES

{

public $modelClass = 'app\models\User';

}

The controller class extends from yii\rest\ActiveController, which im-
plements a common set of RESTful actions. By specifying yii\rest\ActiveController
::modelClass as app\models\User, the controller knows which model can be
used for fetching and manipulating data.

11.1.2 Con�guring URL Rules

Then, modify the con�guration of the urlManager component in your applic-
ation con�guration:

'urlManager' => [

'enablePrettyUrl' => true,

'enableStrictParsing' => true,

'showScriptName' => false,

'rules' => [

['class' => 'yii\rest\UrlRule', 'controller' => 'user'],

],

]

The above con�guration mainly adds a URL rule for the user controller so
that the user data can be accessed and manipulated with pretty URLs and
meaningful HTTP verbs.

Note: Yii will automatically pluralize controller names for use
in endpoints (see Trying it Out section below). You can con�gure
this using the yii\rest\UrlRule::$pluralize property.

11.1.3 Enabling JSON Input

To let the API accept input data in JSON format, con�gure the yii\web

\Request::$parsers property of the request application component to use
the yii\web\JsonParser for JSON input:

'request' => [

'parsers' => [

'application/json' => 'yii\web\JsonParser',

]

]

Info: The above con�guration is optional. Without the above
con�guration, the API would only recognize application/x-www-

form-urlencoded and multipart/form-data input formats.

11.1. QUICK START 439

11.1.4 Trying it Out

With the above minimal amount of e�ort, you have already �nished your
task of creating the RESTful APIs for accessing the user data. The APIs
you have created include:

• GET /users: list all users page by page;
• HEAD /users: show the overview information of user listing;
• POST /users: create a new user;
• GET /users/123: return the details of the user 123;
• HEAD /users/123: show the overview information of user 123;
• PATCH /users/123 and PUT /users/123: update the user 123;
• DELETE /users/123: delete the user 123;
• OPTIONS /users: show the supported verbs regarding endpoint /users;
• OPTIONS /users/123: show the supported verbs regarding endpoint /users

/123.

You may access your APIs with the curl command like the following,

$ curl -i -H "Accept:application/json" "http://localhost/users"

HTTP/1.1 200 OK

...

X-Pagination-Total-Count: 1000

X-Pagination-Page-Count: 50

X-Pagination-Current-Page: 1

X-Pagination-Per-Page: 20

Link: <http://localhost/users?page=1>; rel=self,

<http://localhost/users?page=2>; rel=next,

<http://localhost/users?page=50>; rel=last

Transfer-Encoding: chunked

Content-Type: application/json; charset=UTF-8

[

{

"id": 1,

...

},

{

"id": 2,

...

},

...

]

Try changing the acceptable content type to be application/xml, and you will
see the result is returned in XML format:

$ curl -i -H "Accept:application/xml" "http://localhost/users"

HTTP/1.1 200 OK

...

X-Pagination-Total-Count: 1000

X-Pagination-Page-Count: 50

440 CHAPTER 11. RESTFUL WEB SERVICES

X-Pagination-Current-Page: 1

X-Pagination-Per-Page: 20

Link: <http://localhost/users?page=1>; rel=self,

<http://localhost/users?page=2>; rel=next,

<http://localhost/users?page=50>; rel=last

Transfer-Encoding: chunked

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<response>

<item>

<id>1</id>

...

</item>

<item>

<id>2</id>

...

</item>

...

</response>

The following command will create a new user by sending a POST request
with the user data in JSON format:

$ curl -i -H "Accept:application/json" -H "Content-Type:application/json" -

XPOST "http://localhost/users" -d '{"username": "example", "email": "

user@example.com"}'

HTTP/1.1 201 Created

...

Location: http://localhost/users/1

Content-Length: 99

Content-Type: application/json; charset=UTF-8

{"id":1,"username":"example","email":"user@example.com","created_at

":1414674789,"updated_at":1414674789}

Tip: You may also access your APIs via Web browser by entering
the URL http://localhost/users. However, you may need some
browser plugins to send speci�c request headers.

As you can see, in the response headers, there is information about the total
count, page count, etc. There are also links that allow you to navigate to
other pages of data. For example, http://localhost/users?page=2 would give
you the next page of the user data.

Using the fields and expand parameters, you may also specify which �elds
should be included in the result. For example, the URL http://localhost/

users?fields=id,email will only return the id and email �elds.

Info: You may have noticed that the result of http://localhost/
users includes some sensitive �elds, such as password_hash, auth_key
. You certainly do not want these to appear in your API result.

11.2. RESOURCES 441

You can and should �lter out these �elds as described in the
Resources section.

11.1.5 Summary

Using the Yii RESTful API framework, you implement an API endpoint in
terms of a controller action, and you use a controller to organize the actions
that implement the endpoints for a single type of resource.

Resources are represented as data models which extend from the yii

\base\Model class. If you are working with databases (relational or NoSQL),
it is recommended you use yii\db\ActiveRecord to represent resources.

You may use yii\rest\UrlRule to simplify the routing to your API
endpoints.

While not required, it is recommended that you develop your RESTful
APIs as a separate application, di�erent from your Web front end and back
end for easier maintenance.

11.2 Resources

RESTful APIs are all about accessing and manipulating resources. You may
view resources as models in the MVC paradigm.

While there is no restriction in how to represent a resource, in Yii you
usually would represent resources in terms of objects of yii\base\Model or
its child classes (e.g. yii\db\ActiveRecord), for the following reasons:

• yii\base\Model implements the yii\base\Arrayable interface, which
allows you to customize how you want to expose resource data through
RESTful APIs.

• yii\base\Model supports input validation, which is useful if your
RESTful APIs need to support data input.

• yii\db\ActiveRecord provides powerful DB data access and manip-
ulation support, which makes it a perfect �t if your resource data is
stored in databases.

In this section, we will mainly describe how a resource class extending from
yii\base\Model (or its child classes) can specify what data may be returned
via RESTful APIs. If the resource class does not extend from yii\base

\Model, then all its public member variables will be returned.

11.2.1 Fields

When including a resource in a RESTful API response, the resource needs to
be serialized into a string. Yii breaks this process into two steps. First, the
resource is converted into an array by yii\rest\Serializer. Second, the
array is serialized into a string in a requested format (e.g. JSON, XML) by

442 CHAPTER 11. RESTFUL WEB SERVICES

yii\web\ResponseFormatterInterface. The �rst step is what you should
mainly focus when developing a resource class.

By overriding yii\base\Model::fields() and/or yii\base\Model::

extraFields(), you may specify what data, called �elds, in the resource
can be put into its array representation. The di�erence between these two
methods is that the former speci�es the default set of �elds which should
be included in the array representation, while the latter speci�es additional
�elds which may be included in the array if an end user requests for them
via the expand query parameter. For example,

// returns all fields as declared in fields()

http://localhost/users

// only returns field id and email, provided they are declared in fields()

http://localhost/users?fields=id,email

// returns all fields in fields() and field profile if it is in extraFields

()

http://localhost/users?expand=profile

// only returns field id, email and profile, provided they are in fields()

and extraFields()

http://localhost/users?fields=id,email&expand=profile

Overriding fields()

By default, yii\base\Model::fields() returns all model attributes as �elds,
while yii\db\ActiveRecord::fields() only returns the attributes which
have been populated from DB.

You can override fields() to add, remove, rename or rede�ne �elds. The
return value of fields() should be an array. The array keys are the �eld
names, and the array values are the corresponding �eld de�nitions which
can be either property/attribute names or anonymous functions returning
the corresponding �eld values. In the special case when a �eld name is the
same as its de�ning attribute name, you can omit the array key. For example,

// explicitly list every field, best used when you want to make sure the

changes

// in your DB table or model attributes do not cause your field changes (to

keep API backward compatibility).

public function fields()

{

return [

// field name is the same as the attribute name

'id',

// field name is "email", the corresponding attribute name is "

email_address"

'email' => 'email_address',

// field name is "name", its value is defined by a PHP callback

'name' => function ($model) {

11.2. RESOURCES 443

return $model->first_name . ' ' . $model->last_name;

},

];

}

// filter out some fields, best used when you want to inherit the parent

implementation

// and blacklist some sensitive fields.

public function fields()

{

$fields = parent::fields();

// remove fields that contain sensitive information

unset($fields['auth_key'], $fields['password_hash'], $fields['

password_reset_token']);

return $fields;

}

Warning: Because by default all attributes of a model will be
included in the API result, you should examine your data to make
sure they do not contain sensitive information. If there is such
information, you should override fields() to �lter them out. In
the above example, we choose to �lter out auth_key, password_hash
and password_reset_token.

Overriding extraFields()

By default, yii\base\Model::extraFields() returns an empty array, while
yii\db\ActiveRecord::extraFields() returns the names of the relations
that have been populated from DB.

The return data format of extraFields() is the same as that of fields

(). Usually, extraFields() is mainly used to specify �elds whose values are
objects. For example, given the following �eld declaration,

public function fields()

{

return ['id', 'email'];

}

public function extraFields()

{

return ['profile'];

}

the request with http://localhost/users?fields=id,email&expand=profile may
return the following JSON data:

[

{

"id": 100,

444 CHAPTER 11. RESTFUL WEB SERVICES

"email": "100@example.com",

"profile": {

"id": 100,

"age": 30,

}

},

...

]

11.2.2 Links

HATEOAS2, an abbreviation for Hypermedia as the Engine of Application
State, promotes that RESTful APIs should return information that allows
clients to discover actions supported for the returned resources. The key of
HATEOAS is to return a set of hyperlinks with relation information when
resource data are served by the APIs.

Your resource classes may support HATEOAS by implementing the yii
\web\Linkable interface. The interface contains a single method yii\web

\Linkable::getLinks() which should return a list of yii\web\Link. Typ-
ically, you should return at least the self link representing the URL to the
resource object itself. For example,

use yii\base\Model;

use yii\web\Link; // represents a link object as defined in JSON Hypermedia

API Language.

use yii\web\Linkable;

use yii\helpers\Url;

class UserResource extends Model implements Linkable

{

public $id;

public $email;

//...

public function fields()

{

return ['id', 'email'];

}

public function extraFields()

{

return ['profile'];

}

public function getLinks()

{

return [

Link::REL_SELF => Url::to(['user/view', 'id' => $this->id], true

),

2http://en.wikipedia.org/wiki/HATEOAS

http://en.wikipedia.org/wiki/HATEOAS

11.2. RESOURCES 445

'edit' => Url::to(['user/view', 'id' => $this->id], true),

'profile' => Url::to(['user/profile/view', 'id' => $this->id],

true),

'index' => Url::to(['users'], true),

];

}

}

When a UserResource object is returned in a response, it will contain a _links

element representing the links related to the user, for example,

{

"id": 100,

"email": "user@example.com",

// ...

"_links" => {

"self": {

"href": "https://example.com/users/100"

},

"edit": {

"href": "https://example.com/users/100"

},

"profile": {

"href": "https://example.com/users/profile/100"

},

"index": {

"href": "https://example.com/users"

}

}

}

11.2.3 Collections

Resource objects can be grouped into collections. Each collection contains a
list of resource objects of the same type.

While collections can be represented as arrays, it is usually more desirable
to represent them as data providers. This is because data providers support
sorting and pagination of resources, which is a commonly needed feature
for RESTful APIs returning collections. For example, the following action
returns a data provider about the post resources:

namespace app\controllers;

use yii\rest\Controller;

use yii\data\ActiveDataProvider;

use app\models\Post;

class PostController extends Controller

{

public function actionIndex()

{

return new ActiveDataProvider([

446 CHAPTER 11. RESTFUL WEB SERVICES

'query' => Post::find(),

]);

}

}

When a data provider is being sent in a RESTful API response, yii\rest
\Serializer will take out the current page of resources and serialize them as
an array of resource objects. Additionally, yii\rest\Serializer will also
include the pagination information by the following HTTP headers:

• X-Pagination-Total-Count: The total number of resources;
• X-Pagination-Page-Count: The number of pages;
• X-Pagination-Current-Page: The current page (1-based);
• X-Pagination-Per-Page: The number of resources in each page;
• Link: A set of navigational links allowing client to traverse the resources
page by page.

An example may be found in the Quick Start section.

11.3 Controllers

After creating the resource classes and specifying how resource data should
be formatted, the next thing to do is to create controller actions to expose
the resources to end users through RESTful APIs.

Yii provides two base controller classes to simplify your work of creating
RESTful actions: yii\rest\Controller and yii\rest\ActiveController.
The di�erence between these two controllers is that the latter provides a
default set of actions that are speci�cally designed to deal with resources
represented as Active Record. So if you are using Active Record and are
comfortable with the provided built-in actions, you may consider extending
your controller classes from yii\rest\ActiveController, which will allow
you to create powerful RESTful APIs with minimal code.

Both yii\rest\Controller and yii\rest\ActiveController provide
the following features, some of which will be described in detail in the next
few sections:

• HTTP method validation;
• Content negotiation and Data formatting;
• Authentication;
• Rate limiting.

yii\rest\ActiveController in addition provides the following features:

• A set of commonly needed actions: index, view, create, update, delete,
options;

• User authorization in regard to the requested action and resource.

11.3. CONTROLLERS 447

11.3.1 Creating Controller Classes

When creating a new controller class, a convention in naming the control-
ler class is to use the type name of the resource and use singular form.
For example, to serve user information, the controller may be named as
UserController.

Creating a new action is similar to creating an action for a Web applica-
tion. The only di�erence is that instead of rendering the result using a view
by calling the render() method, for RESTful actions you directly return the
data. The yii\rest\Controller::serializer and the yii\web\Response
will handle the conversion from the original data to the requested format.
For example,

public function actionView($id)

{

return User::findOne($id);

}

11.3.2 Filters

Most RESTful API features provided by yii\rest\Controller are imple-
mented in terms of �lters. In particular, the following �lters will be executed
in the order they are listed:

• yii\filters\ContentNegotiator: supports content negotiation, to
be explained in the Response Formatting section;

• yii\filters\VerbFilter: supports HTTP method validation;
• yii\filters\auth\AuthMethod: supports user authentication, to be
explained in the Authentication section;

• yii\filters\RateLimiter: supports rate limiting, to be explained in
the Rate Limiting section.

These named �lters are declared in the yii\rest\Controller::behaviors()
method. You may override this method to con�gure individual �lters, dis-
able some of them, or add your own �lters. For example, if you only want
to use HTTP basic authentication, you may write the following code:

use yii\filters\auth\HttpBasicAuth;

public function behaviors()

{

$behaviors = parent::behaviors();

$behaviors['authenticator'] = [

'class' => HttpBasicAuth::className(),

];

return $behaviors;

}

448 CHAPTER 11. RESTFUL WEB SERVICES

CORS

Adding the Cross-Origin Resource Sharing �lter to a controller is a bit more
complicated than adding other �lters described above, because the CORS
�lter has to be applied before authentication methods and thus needs a
slightly di�erent approach compared to other �lters. Also authentication
has to be disabled for the CORS Pre�ight requests3 so that a browser can
safely determine whether a request can be made beforehand without the
need for sending authentication credentials. The following shows the code
that is needed to add the yii\filters\Cors �lter to an existing controller
that extends from yii\rest\ActiveController:

use yii\filters\auth\HttpBasicAuth;

public function behaviors()

{

$behaviors = parent::behaviors();

// remove authentication filter

$auth = $behaviors['authenticator'];

unset($behaviors['authenticator']);

// add CORS filter

$behaviors['corsFilter'] = [

'class' => \yii\filters\Cors::className(),

];

// re-add authentication filter

$behaviors['authenticator'] = $auth;

// avoid authentication on CORS-pre-flight requests (HTTP OPTIONS method

)

$behaviors['authenticator']['except'] = ['options'];

return $behaviors;

}

11.3.3 Extending ActiveController

If your controller class extends from yii\rest\ActiveController, you should
set its yii\rest\ActiveController::modelClass property to be the name
of the resource class that you plan to serve through this controller. The class
must extend from yii\db\ActiveRecord.

Customizing Actions

By default, yii\rest\ActiveController provides the following actions:

• yii\rest\IndexAction: list resources page by page;

3https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#

Preflighted_requests

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Preflighted_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Preflighted_requests

11.3. CONTROLLERS 449

• yii\rest\ViewAction: return the details of a speci�ed resource;
• yii\rest\CreateAction: create a new resource;
• yii\rest\UpdateAction: update an existing resource;
• yii\rest\DeleteAction: delete the speci�ed resource;
• yii\rest\OptionsAction: return the supported HTTP methods.

All these actions are declared through the yii\rest\ActiveController::

actions() method. You may con�gure these actions or disable some of them
by overriding the actions() method, like shown the following,

public function actions()

{

$actions = parent::actions();

// disable the "delete" and "create" actions

unset($actions['delete'], $actions['create']);

// customize the data provider preparation with the "prepareDataProvider

()" method

$actions['index']['prepareDataProvider'] = [$this, 'prepareDataProvider'

];

return $actions;

}

public function prepareDataProvider()

{

// prepare and return a data provider for the "index" action

}

Please refer to the class references for individual action classes to learn what
con�guration options are available.

Performing Access Check

When exposing resources through RESTful APIs, you often need to check if
the current user has the permission to access and manipulate the requested
resource(s). With yii\rest\ActiveController, this can be done by over-
riding the yii\rest\ActiveController::checkAccess() method like the
following,

/**

* Checks the privilege of the current user.

*

* This method should be overridden to check whether the current user has

the privilege

* to run the specified action against the specified data model.

* If the user does not have access, a [[ForbiddenHttpException]] should be

thrown.

*

* @param string $action the ID of the action to be executed

* @param \yii\base\Model $model the model to be accessed. If `null`, it

means no specific model is being accessed.

450 CHAPTER 11. RESTFUL WEB SERVICES

* @param array $params additional parameters

* @throws ForbiddenHttpException if the user does not have access

*/

public function checkAccess($action, $model = null, $params = [])

{

// check if the user can access $action and $model

// throw ForbiddenHttpException if access should be denied

if ($action === 'update' || $action === 'delete') {

if ($model->author_id !== \Yii::$app->user->id)

throw new \yii\web\ForbiddenHttpException(sprintf('You can only

%s articles that you\'ve created.', $action));

}

}

The checkAccess() method will be called by the default actions of yii\rest
\ActiveController. If you create new actions and also want to perform
access check, you should call this method explicitly in the new actions.

Tip: You may implement checkAccess() by using the Role-Based
Access Control (RBAC) component.

11.4 Routing

With resource and controller classes ready, you can access the resources using
the URL like http://localhost/index.php?r=user/create, similar to what you
can do with normal Web applications.

In practice, you usually want to enable pretty URLs and take advantage
of HTTP verbs. For example, a request POST /users would mean accessing
the user/create action. This can be done easily by con�guring the urlManager

application component in the application con�guration like the following:

'urlManager' => [

'enablePrettyUrl' => true,

'enableStrictParsing' => true,

'showScriptName' => false,

'rules' => [

['class' => 'yii\rest\UrlRule', 'controller' => 'user'],

],

]

Compared to the URL management for Web applications, the main new
thing above is the use of yii\rest\UrlRule for routing RESTful API re-
quests. This special URL rule class will create a whole set of child URL
rules to support routing and URL creation for the speci�ed controller(s).
For example, the above code is roughly equivalent to the following rules:

[

'PUT,PATCH users/<id>' => 'user/update',

'DELETE users/<id>' => 'user/delete',

'GET,HEAD users/<id>' => 'user/view',

11.4. ROUTING 451

'POST users' => 'user/create',

'GET,HEAD users' => 'user/index',

'users/<id>' => 'user/options',

'users' => 'user/options',

]

And the following API endpoints are supported by this rule:
• GET /users: list all users page by page;
• HEAD /users: show the overview information of user listing;
• POST /users: create a new user;
• GET /users/123: return the details of the user 123;
• HEAD /users/123: show the overview information of user 123;
• PATCH /users/123 and PUT /users/123: update the user 123;
• DELETE /users/123: delete the user 123;
• OPTIONS /users: show the supported verbs regarding endpoint /users;
• OPTIONS /users/123: show the supported verbs regarding endpoint /users

/123.
You may con�gure the only and except options to explicitly list which actions
to support or which actions should be disabled, respectively. For example,

[

'class' => 'yii\rest\UrlRule',

'controller' => 'user',

'except' => ['delete', 'create', 'update'],

],

You may also con�gure patterns or extraPatterns to rede�ne existing patterns
or add new patterns supported by this rule. For example, to support a new
action search by the endpoint GET /users/search, con�gure the extraPatterns

option as follows,

[

'class' => 'yii\rest\UrlRule',

'controller' => 'user',

'extraPatterns' => [

'GET search' => 'search',

],

]

You may have noticed that the controller ID user appears in plural form
as users in the endpoint URLs. This is because yii\rest\UrlRule auto-
matically pluralizes controller IDs when creating child URL rules. You may
disable this behavior by setting yii\rest\UrlRule::pluralize to be false.

Info: The pluralization of controller IDs is done by yii\helpers

\Inflector::pluralize(). The method respects special plur-
alization rules. For example, the word box will be pluralized as
boxes instead of boxs.

In case when the automatic pluralization does not meet your requirement,
you may also con�gure the yii\rest\UrlRule::controller property to

452 CHAPTER 11. RESTFUL WEB SERVICES

explicitly specify how to map a name used in endpoint URLs to a controller
ID. For example, the following code maps the name u to the controller ID
user.

[

'class' => 'yii\rest\UrlRule',

'controller' => ['u' => 'user'],

]

11.5 Response Formatting

When handling a RESTful API request, an application usually takes the
following steps that are related with response formatting:

1. Determine various factors that may a�ect the response format, such
as media type, language, version, etc. This process is also known as
content negotiation4.

2. Convert resource objects into arrays, as described in the Resources
section. This is done by yii\rest\Serializer.

3. Convert arrays into a string in the format as determined by the content
negotiation step. This is done by yii\web\ResponseFormatterInterface
registered with the yii\web\Response::formatters property of the
response application component.

11.5.1 Content Negotiation

Yii supports content negotiation via the yii\filters\ContentNegotiator

�lter. The RESTful API base controller class yii\rest\Controller is
equipped with this �lter under the name of contentNegotiator. The �lter
provides response format negotiation as well as language negotiation. For
example, if a RESTful API request contains the following header,

Accept: application/json; q=1.0, */*; q=0.1

it will get a response in JSON format, like the following:

$ curl -i -H "Accept: application/json; q=1.0, */*; q=0.1" "http://localhost

/users"

HTTP/1.1 200 OK

Date: Sun, 02 Mar 2014 05:31:43 GMT

Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y

X-Powered-By: PHP/5.4.20

X-Pagination-Total-Count: 1000

X-Pagination-Page-Count: 50

X-Pagination-Current-Page: 1

4http://en.wikipedia.org/wiki/Content_negotiation

http://en.wikipedia.org/wiki/Content_negotiation

11.5. RESPONSE FORMATTING 453

X-Pagination-Per-Page: 20

Link: <http://localhost/users?page=1>; rel=self,

<http://localhost/users?page=2>; rel=next,

<http://localhost/users?page=50>; rel=last

Transfer-Encoding: chunked

Content-Type: application/json; charset=UTF-8

[

{

"id": 1,

...

},

{

"id": 2,

...

},

...

]

Behind the scene, before a RESTful API controller action is executed, the
yii\filters\ContentNegotiator �lter will check the Accept HTTP header
in the request and set the yii\web\Response::format to be 'json'. After
the action is executed and returns the resulting resource object or collection,
yii\rest\Serializer will convert the result into an array. And �nally, yii
\web\JsonResponseFormatter will serialize the array into a JSON string
and include it in the response body.

By default, RESTful APIs support both JSON and XML formats. To
support a new format, you should con�gure the yii\filters\ContentNegotiator
::formats property of the contentNegotiator �lter like the following in your
API controller classes:

use yii\web\Response;

public function behaviors()

{

$behaviors = parent::behaviors();

$behaviors['contentNegotiator']['formats']['text/html'] = Response::

FORMAT_HTML;

return $behaviors;

}

The keys of the formats property are the supported MIME types, while the
values are the corresponding response format names which must be suppor-
ted in yii\web\Response::formatters.

11.5.2 Data Serializing

As we have described above, yii\rest\Serializer is the central piece re-
sponsible for converting resource objects or collections into arrays. It re-
cognizes objects implementing yii\base\Arrayable as well as yii\data

454 CHAPTER 11. RESTFUL WEB SERVICES

\DataProviderInterface. The former is mainly implemented by resource
objects, while the latter resource collections.

You may con�gure the serializer by setting the yii\rest\Controller::
serializer property with a con�guration array. For example, sometimes
you may want to help simplify the client development work by including
pagination information directly in the response body. To do so, con�gure
the yii\rest\Serializer::collectionEnvelope property as follows:

use yii\rest\ActiveController;

class UserController extends ActiveController

{

public $modelClass = 'app\models\User';

public $serializer = [

'class' => 'yii\rest\Serializer',

'collectionEnvelope' => 'items',

];

}

You may then get the following response for request http://localhost/users:

HTTP/1.1 200 OK

Date: Sun, 02 Mar 2014 05:31:43 GMT

Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y

X-Powered-By: PHP/5.4.20

X-Pagination-Total-Count: 1000

X-Pagination-Page-Count: 50

X-Pagination-Current-Page: 1

X-Pagination-Per-Page: 20

Link: <http://localhost/users?page=1>; rel=self,

<http://localhost/users?page=2>; rel=next,

<http://localhost/users?page=50>; rel=last

Transfer-Encoding: chunked

Content-Type: application/json; charset=UTF-8

{

"items": [

{

"id": 1,

...

},

{

"id": 2,

...

},

...

],

"_links": {

"self": {

"href": "http://localhost/users?page=1"

},

"next": {

"href": "http://localhost/users?page=2"

},

11.6. AUTHENTICATION 455

"last": {

"href": "http://localhost/users?page=50"

}

},

"_meta": {

"totalCount": 1000,

"pageCount": 50,

"currentPage": 1,

"perPage": 20

}

}

Controlling JSON output

The JSON response is generated by the yii\web\JsonResponseFormatter

class which will use the yii\helpers\Json internally. This formatter can be
con�gured with di�erent options like for example the yii\web\JsonResponseFormatter
::$prettyPrint option, which is useful on development for better readable
responses, or yii\web\JsonResponseFormatter::$encodeOptions to con-
trol the output of the JSON encoding.

The formatter can be con�gured in the yii\web\Response::formatters
property of the response application component in the application con�gur-
ation like the following:

'response' => [

// ...

'formatters' => [

\yii\web\Response::FORMAT_JSON => [

'class' => 'yii\web\JsonResponseFormatter',

'prettyPrint' => YII_DEBUG, // use "pretty" output in debug mode

'encodeOptions' => JSON_UNESCAPED_SLASHES |

JSON_UNESCAPED_UNICODE,

// ...

],

],

],

When returning data from a database using the DAO database layer all
data will be represented as strings, which is not always the expected result
especially numeric values should be represented as numbers in JSON. When
using the ActiveRecord layer for retrieving data from the database, the values
for numeric columns will be converted to integers when data is fetched from
the database in yii\db\ActiveRecord::populateRecord().

11.6 Authentication

Unlike Web applications, RESTful APIs are usually stateless, which means
sessions or cookies should not be used. Therefore, each request should come
with some sort of authentication credentials because the user authentication

456 CHAPTER 11. RESTFUL WEB SERVICES

status may not be maintained by sessions or cookies. A common practice
is to send a secret access token with each request to authenticate the user.
Since an access token can be used to uniquely identify and authenticate a
user, API requests should always be sent via HTTPS to prevent
man-in-the-middle (MitM) attacks.

There are di�erent ways to send an access token:

• HTTP Basic Auth5: the access token is sent as the username. This
should only be used when an access token can be safely stored on the
API consumer side. For example, the API consumer is a program
running on a server.

• Query parameter: the access token is sent as a query parameter in the
API URL, e.g., https://example.com/users?access-token=xxxxxxxx. Be-
cause most Web servers will keep query parameters in server logs, this
approach should be mainly used to serve JSONP requests which cannot
use HTTP headers to send access tokens.

• OAuth 26: the access token is obtained by the consumer from an
authorization server and sent to the API server via HTTP Bearer
Tokens7, according to the OAuth2 protocol.

Yii supports all of the above authentication methods. You can also easily
create new authentication methods.

To enable authentication for your APIs, do the following steps:

1. Con�gure the user application component:

• Set the yii\web\User::enableSession property to be false.
• Set the yii\web\User::loginUrl property to be null to show a
HTTP 403 error instead of redirecting to the login page.

2. Specify which authentication methods you plan to use by con�guring
the authenticator behavior in your REST controller classes.

3. Implement yii\web\IdentityInterface::findIdentityByAccessToken()
in your yii\web\User::identityClass.

Step 1 is not required but is recommended for RESTful APIs which should be
stateless. When yii\web\User::enableSession is false, the user authen-
tication status will NOT be persisted across requests using sessions. Instead,
authentication will be performed for every request, which is accomplished by
Step 2 and 3.

Tip: You may con�gure yii\web\User::enableSession of the
user application component in application con�gurations if you

5http://en.wikipedia.org/wiki/Basic_access_authentication
6http://oauth.net/2/
7http://tools.ietf.org/html/rfc6750

http://en.wikipedia.org/wiki/Basic_access_authentication
http://oauth.net/2/
http://tools.ietf.org/html/rfc6750

11.6. AUTHENTICATION 457

are developing RESTful APIs in terms of an application. If you
develop RESTful APIs as a module, you may put the following
line in the module's init() method, like the following:

public function init()

{

parent::init();

\Yii::$app->user->enableSession = false;

}

For example, to use HTTP Basic Auth, you may con�gure the authenticator

behavior as follows,

use yii\filters\auth\HttpBasicAuth;

public function behaviors()

{

$behaviors = parent::behaviors();

$behaviors['authenticator'] = [

'class' => HttpBasicAuth::className(),

];

return $behaviors;

}

If you want to support all three authentication methods explained above,
you can use CompositeAuth like the following,

use yii\filters\auth\CompositeAuth;

use yii\filters\auth\HttpBasicAuth;

use yii\filters\auth\HttpBearerAuth;

use yii\filters\auth\QueryParamAuth;

public function behaviors()

{

$behaviors = parent::behaviors();

$behaviors['authenticator'] = [

'class' => CompositeAuth::className(),

'authMethods' => [

HttpBasicAuth::className(),

HttpBearerAuth::className(),

QueryParamAuth::className(),

],

];

return $behaviors;

}

Each element in authMethods should be an auth method class name or a
con�guration array.

Implementation of findIdentityByAccessToken() is application speci�c. For
example, in simple scenarios when each user can only have one access token,
you may store the access token in an access_token column in the user table.
The method can then be readily implemented in the User class as follows,

458 CHAPTER 11. RESTFUL WEB SERVICES

use yii\db\ActiveRecord;

use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface

{

public static function findIdentityByAccessToken($token, $type = null)

{

return static::findOne(['access_token' => $token]);

}

}

After authentication is enabled as described above, for every API request,
the requested controller will try to authenticate the user in its beforeAction()
step.

If authentication succeeds, the controller will perform other checks (such
as rate limiting, authorization) and then run the action. The authenticated
user identity information can be retrieved via Yii::$app->user->identity.

If authentication fails, a response with HTTP status 401 will be sent back
together with other appropriate headers (such as a WWW-Authenticate header
for HTTP Basic Auth).

11.6.1 Authorization

After a user is authenticated, you probably want to check if he or she has the
permission to perform the requested action for the requested resource. This
process is called authorization which is covered in detail in the Authorization
section.

If your controllers extend from yii\rest\ActiveController, you may
override the yii\rest\ActiveController::checkAccess() method to per-
form authorization check. The method will be called by the built-in actions
provided by yii\rest\ActiveController.

11.7 Rate Limiting

To prevent abuse, you should consider adding rate limiting to your APIs.
For example, you may want to limit the API usage of each user to be at
most 100 API calls within a period of 10 minutes. If too many requests are
received from a user within the stated period of the time, a response with
status code 429 (meaning �Too Many Requests�) should be returned.

To enable rate limiting, the yii\web\User::identityClass should im-
plement yii\filters\RateLimitInterface. This interface requires imple-
mentation of three methods:

• getRateLimit(): returns the maximum number of allowed requests and
the time period (e.g., [100, 600] means there can be at most 100 API
calls within 600 seconds).

11.7. RATE LIMITING 459

• loadAllowance(): returns the number of remaining requests allowed
and the corresponding UNIX timestamp when the rate limit was last
checked.

• saveAllowance(): saves both the number of remaining requests allowed
and the current UNIX timestamp.

You may want to use two columns in the user table to record the allow-
ance and timestamp information. With those de�ned, then loadAllowance()

and saveAllowance() can be implemented to read and save the values of the
two columns corresponding to the current authenticated user. To improve
performance, you may also consider storing these pieces of information in a
cache or NoSQL storage.

Implementation in the User model could look like the following:

public function getRateLimit($request, $action)

{

return [$this->rateLimit, 1]; // $rateLimit requests per second

}

public function loadAllowance($request, $action)

{

return [$this->allowance, $this->allowance_updated_at];

}

public function saveAllowance($request, $action, $allowance, $timestamp)

{

$this->allowance = $allowance;

$this->allowance_updated_at = $timestamp;

$this->save();

}

Once the identity class implements the required interface, Yii will automat-
ically use yii\filters\RateLimiter con�gured as an action �lter for yii
\rest\Controller to perform rate limiting check. The rate limiter will
throw a yii\web\TooManyRequestsHttpException when the rate limit is
exceeded.

You may con�gure the rate limiter as follows in your REST controller
classes:

public function behaviors()

{

$behaviors = parent::behaviors();

$behaviors['rateLimiter']['enableRateLimitHeaders'] = false;

return $behaviors;

}

When rate limiting is enabled, by default every response will be sent with the
following HTTP headers containing the current rate limiting information:

• X-Rate-Limit-Limit, the maximum number of requests allowed with a
time period

• X-Rate-Limit-Remaining, the number of remaining requests in the current
time period

460 CHAPTER 11. RESTFUL WEB SERVICES

• X-Rate-Limit-Reset, the number of seconds to wait in order to get the
maximum number of allowed requests

You may disable these headers by con�guring yii\filters\RateLimiter::

enableRateLimitHeaders to be false, as shown in the above code example.

11.8 Versioning

A good API is versioned : changes and new features are implemented in new
versions of the API instead of continually altering just one version. Unlike
Web applications, with which you have full control of both the client-side
and server-side code, APIs are meant to be used by clients beyond your
control. For this reason, backward compatibility (BC) of the APIs should be
maintained whenever possible. If a change that may break BC is necessary,
you should introduce it in new version of the API, and bump up the version
number. Existing clients can continue to use the old, working version of the
API; and new or upgraded clients can get the new functionality in the new
API version.

Tip: Refer to Semantic Versioning8 for more information on
designing API version numbers.

One common way to implement API versioning is to embed the version
number in the API URLs. For example, http://example.com/v1/users stands
for the /users endpoint of API version 1.

Another method of API versioning, which has gained momentum re-
cently, is to put the version number in the HTTP request headers. This is
typically done through the Accept header:

// via a parameter

Accept: application/json; version=v1

// via a vendor content type

Accept: application/vnd.company.myapp-v1+json

Both methods have their pros and cons, and there are a lot of debates about
each approach. Below you'll see a practical strategy for API versioning that
is a mix of these two methods:

• Put each major version of API implementation in a separate module
whose ID is the major version number (e.g. v1, v2). Naturally, the API
URLs will contain major version numbers.

• Within each major version (and thus within the corresponding mod-
ule), use the Accept HTTP request header to determine the minor
version number and write conditional code to respond to the minor
versions accordingly.

8http://semver.org/

http://semver.org/

11.8. VERSIONING 461

For each module serving a major version, the module should include the re-
source and controller classes serving that speci�c version. To better separate
code responsibility, you may keep a common set of base resource and con-
troller classes, and subclass them in each individual version module. Within
the subclasses, implement the concrete code such as Model::fields().

Your code may be organized like the following:

api/

common/

controllers/

UserController.php

PostController.php

models/

User.php

Post.php

modules/

v1/

controllers/

UserController.php

PostController.php

models/

User.php

Post.php

Module.php

v2/

controllers/

UserController.php

PostController.php

models/

User.php

Post.php

Module.php

Your application con�guration would look like:

return [

'modules' => [

'v1' => [

'class' => 'app\modules\v1\Module',

],

'v2' => [

'class' => 'app\modules\v2\Module',

],

],

'components' => [

'urlManager' => [

'enablePrettyUrl' => true,

'enableStrictParsing' => true,

'showScriptName' => false,

'rules' => [

['class' => 'yii\rest\UrlRule', 'controller' => ['v1/user',

'v1/post']],

['class' => 'yii\rest\UrlRule', 'controller' => ['v2/user',

'v2/post']],

462 CHAPTER 11. RESTFUL WEB SERVICES

],

],

],

];

As a result of the above code, http://example.com/v1/users will return the list
of users in version 1, while http://example.com/v2/users will return version 2
users.

Thanks to modules, the code for di�erent major versions can be well
isolated. But modules make it still possible to reuse code across the modules
via common base classes and other shared resources.

To deal with minor version numbers, you may take advantage of the con-
tent negotiation feature provided by the yii\filters\ContentNegotiator

behavior. The contentNegotiator behavior will set the yii\web\Response::

acceptParams property when it determines which content type to support.

For example, if a request is sent with the HTTP header Accept: application

/json; version=v1, after content negotiation, yii\web\Response::acceptParams
will contain the value ['version' => 'v1'].

Based on the version information in acceptParams, you may write condi-
tional code in places such as actions, resource classes, serializers, etc. to
provide the appropriate functionality.

Since minor versions by de�nition require maintaining backward com-
patibility, hopefully there would not be many version checks in your code.
Otherwise, chances are that you may need to create a new major version.

11.9 Error Handling

When handling a RESTful API request, if there is an error in the user
request or if something unexpected happens on the server, you may simply
throw an exception to notify the user that something went wrong. If you can
identify the cause of the error (e.g., the requested resource does not exist),
you should consider throwing an exception along with a proper HTTP status
code (e.g., yii\web\NotFoundHttpException represents a 404 status code).
Yii will send the response along with the corresponding HTTP status code
and text. Yii will also include the serialized representation of the exception
in the response body. For example:

HTTP/1.1 404 Not Found

Date: Sun, 02 Mar 2014 05:31:43 GMT

Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y

Transfer-Encoding: chunked

Content-Type: application/json; charset=UTF-8

{

"name": "Not Found Exception",

"message": "The requested resource was not found.",

"code": 0,

11.9. ERROR HANDLING 463

"status": 404

}

The following list summarizes the HTTP status codes that are used by the
Yii REST framework:

• 200: OK. Everything worked as expected.
• 201: A resource was successfully created in response to a POST request.
The Location header contains the URL pointing to the newly created
resource.

• 204: The request was handled successfully and the response contains
no body content (like a DELETE request).

• 304: The resource was not modi�ed. You can use the cached version.
• 400: Bad request. This could be caused by various actions by the user,
such as providing invalid JSON data in the request body, providing
invalid action parameters, etc.

• 401: Authentication failed.
• 403: The authenticated user is not allowed to access the speci�ed API
endpoint.

• 404: The requested resource does not exist.
• 405: Method not allowed. Please check the Allow header for the allowed
HTTP methods.

• 415: Unsupported media type. The requested content type or version
number is invalid.

• 422: Data validation failed (in response to a POST request, for example).
Please check the response body for detailed error messages.

• 429: Too many requests. The request was rejected due to rate limiting.
• 500: Internal server error. This could be caused by internal program
errors.

11.9.1 Customizing Error Response

Sometimes you may want to customize the default error response format.
For example, instead of relying on using di�erent HTTP statuses to indicate
di�erent errors, you would like to always use 200 as HTTP status and enclose
the actual HTTP status code as part of the JSON structure in the response,
like shown in the following,

HTTP/1.1 200 OK

Date: Sun, 02 Mar 2014 05:31:43 GMT

Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y

Transfer-Encoding: chunked

Content-Type: application/json; charset=UTF-8

{

"success": false,

"data": {

"name": "Not Found Exception",

464 CHAPTER 11. RESTFUL WEB SERVICES

"message": "The requested resource was not found.",

"code": 0,

"status": 404

}

}

To achieve this goal, you can respond to the beforeSend event of the response

component in the application con�guration:

return [

// ...

'components' => [

'response' => [

'class' => 'yii\web\Response',

'on beforeSend' => function ($event) {

$response = $event->sender;

if ($response->data !== null && Yii::$app->request->get('

suppress_response_code')) {

$response->data = [

'success' => $response->isSuccessful,

'data' => $response->data,

];

$response->statusCode = 200;

}

},

],

],

];

The above code will reformat the response (for both successful and failed
responses) as explained when suppress_response_code is passed as a GET para-
meter.

Chapter 12

Development Tools

465

466 CHAPTER 12. DEVELOPMENT TOOLS

Error: not existing �le: https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md

467

Error: not existing �le: https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md

468 CHAPTER 12. DEVELOPMENT TOOLS

Error: not existing �le: https://github.com/yiisoft/yii2-apidoc

Chapter 13

Testing

13.1 Testing

Testing is an important part of software development. Whether we are aware
of it or not, we conduct testing continuously. For example, when we write
a class in PHP, we may debug it step by step or simply use echo or die

statements to verify the implementation works according to our initial plan.
In the case of a web application, we're entering some test data in forms to
ensure the page interacts with us as expected.

The testing process could be automated so that each time when we need
to verify something, we just need to call up the code that does it for us.
The code that veri�es the result matches what we've planned is called test

and the process of its creation and further execution is known as automated

testing, which is the main topic of these testing chapters.

13.1.1 Developing with tests

Test-Driven Development (TDD) and Behavior-Driven Development (BDD)
are approaches of developing software by describing behavior of a piece of
code or the whole feature as a set of scenarios or tests before writing actual
code and only then creating the implementation that allows these tests to
pass verifying that intended behavior is achieved.

The process of developing a feature is the following:
• Create a new test that describes a feature to be implemented.
• Run the new test and make sure it fails. It is expected since there's no
implementation yet.

• Write simple code to make the new test pass.
• Run all tests and make sure they all pass.
• Improve code and make sure tests are still OK.

After it's done the process is repeated again for another feature or improve-
ment. If the existing feature is to be changed, tests should be changed as
well.

469

470 CHAPTER 13. TESTING

Tip: If you feel that you are losing time doing a lot of small and
simple iterations, try covering more by your test scenario so you
do more before executing tests again. If you're debugging too
much, try doing the opposite.

The reason to create tests before doing any implementation is that it allows
us to focus on what we want to achieve and fully dive into �how to do it� af-
terwards. Usually it leads to better abstractions and easier test maintenance
when it comes to feature adjustments or less coupled components.

So to sum up the pros of such an approach are the following:

• Keeps you focused on one thing at a time which results in improved
planning and implementation.

• Results in test-covering more features in greater detail i.e. if tests are
OK most likely nothing's broken.

In the long term it usually gives you a good time-saving e�ect.

Tip: If you want to know more about the principles for gathering
software requirements and modeling the subject matter it's good
to learn Domain Driven Development (DDD)1.

13.1.2 When and how to test

While the test �rst approach described above makes sense for long term and
relatively complex projects it could be overkill for simpler ones. There are
some indicators of when it's appropriate:

• Project is already large and complex.
• Project requirements are starting to get complex. Project grows con-
stantly.

• Project is meant to be long term.
• The cost of the failure is too high.

There's nothing wrong in creating tests covering behavior of existing imple-
mentation.

• Project is a legacy one to be gradually renewed.
• You've got a project to work on and it has no tests.

In some cases any form of automated testing could be overkill:

• Project is simple and isn't getting anymore complex.
• It's a one-time project that will no longer be worked on.

Still if you have time it's good to automate testing in these cases as well.

13.1.3 Further reading

• Test Driven Development: By Example / Kent Beck. ISBN: 0321146530.

1https://en.wikipedia.org/wiki/Domain-driven_design

https://en.wikipedia.org/wiki/Domain-driven_design

13.2. TESTING ENVIRONMENT SETUP 471

13.2 Testing environment setup

Note: This section is under development.

Yii 2 has o�cially maintained integration with Codeception2 testing frame-
work that allows you to create the following test types:

• Unit testing - veri�es that a single unit of code is working as expected;
• Functional testing - veri�es scenarios from a user's perspective via
browser emulation;

• Acceptance testing - veri�es scenarios from a user's perspective in a
browser.

Yii provides ready to use test sets for all three test types in both yii2-basic3

and yii2-advanced4 project templates.

In order to run tests you need to install Codeception5. You can install it
either locally - for particular project only, or globally - for your development
machine.

For the local installation use following commands:

composer require "codeception/codeception=2.1.*"

composer require "codeception/specify=*"

composer require "codeception/verify=*"

For the global installation you will need to use global directive:

composer global require "codeception/codeception=2.1.*"

composer global require "codeception/specify=*"

composer global require "codeception/verify=*"

If you've never used Composer for global packages before, run composer global

status. It should output:

Changed current directory to <directory>

Then add <directory>/vendor/bin to you PATH environment variable. Now
we're able to use codecept from command line globally.

Note: global installation allows you use Codeception for all pro-
jects you are working on your development machine and allows
running codecept shell command globally without specifying path.
However, such approach may be inappropriate, for example, if 2
di�erent projects require di�erent versions of Codeception in-
stalled. For the simplicity all shell commands related to the tests
running around this guide are written assuming Codeception has
been installed globally.

2https://github.com/Codeception/Codeception
3https://github.com/yiisoft/yii2-app-basic
4https://github.com/yiisoft/yii2-app-advanced
5https://github.com/Codeception/Codeception

https://github.com/Codeception/Codeception
https://github.com/yiisoft/yii2-app-basic
https://github.com/yiisoft/yii2-app-advanced
https://github.com/Codeception/Codeception

472 CHAPTER 13. TESTING

13.3 Unit Tests

Note: This section is under development.

A unit test veri�es that a single unit of code is working as expected. In
object-oriented programming, the most basic code unit is a class. A unit
test thus mainly needs to verify that each of the class interface methods
works properly. That is, given di�erent input parameters, the test veri�es
the method returns expected results. Unit tests are usually developed by
people who write the classes being tested.

Unit testing in Yii is built on top of PHPUnit and, optionally, Codecep-
tion so it's recommended to go through their docs:

• PHPUnit docs starting from chapter 26.
• Codeception Unit Tests7.

13.3.1 Running basic and advanced template tests

If you've started with advanced template, please refer to �testing� guide8 for
more details about running tests.

If you've started with basic template, check its README �testing� sec-
tion9.

13.3.2 Framework unit tests

If you want to run unit tests for Yii framework itself follow �Getting started
with Yii 2 development10�.

13.4 Functional Tests

Note: This section is under development.

• Codeception Functional Tests11

13.4.1 Running basic and advanced template functional tests

Please refer to instructions provided in apps/advanced/tests/README.md and apps

/basic/tests/README.md.

6http://phpunit.de/manual/current/en/writing-tests-for-phpunit.html
7http://codeception.com/docs/05-UnitTests
8https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/

start-testing.md
9https://github.com/yiisoft/yii2-app-basic/blob/master/README.md#testing

10https://github.com/yiisoft/yii2/blob/master/docs/internals/

getting-started.md
11http://codeception.com/docs/04-FunctionalTests

http://phpunit.de/manual/current/en/writing-tests-for-phpunit.html
http://codeception.com/docs/05-UnitTests
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-testing.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-testing.md
https://github.com/yiisoft/yii2-app-basic/blob/master/README.md#testing
https://github.com/yiisoft/yii2/blob/master/docs/internals/getting-started.md
https://github.com/yiisoft/yii2/blob/master/docs/internals/getting-started.md
http://codeception.com/docs/04-FunctionalTests

13.5. ACCEPTANCE TESTS 473

13.5 Acceptance Tests

Note: This section is under development.

• Codeception Acceptance Tests12

13.5.1 Running basic and advanced template acceptance tests

Please refer to instructions provided in apps/advanced/tests/README.md and apps

/basic/tests/README.md.

13.6 Fixtures

Fixtures are an important part of testing. Their main purpose is to set up
the environment in a �xed/known state so that your tests are repeatable and
run in an expected way. Yii provides a �xture framework that allows you to
de�ne your �xtures precisely and use them easily.

A key concept in the Yii �xture framework is the so-called �xture object.
A �xture object represents a particular aspect of a test environment and is
an instance of yii\test\Fixture or its child class. For example, you may
use UserFixture to make sure the user DB table contains a �xed set of data.
You load one or multiple �xture objects before running a test and unload
them when �nishing.

A �xture may depend on other �xtures, speci�ed via its yii\test\Fixture
::depends property. When a �xture is being loaded, the �xtures it depends
on will be automatically loaded BEFORE the �xture; and when the �xture is
being unloaded, the dependent �xtures will be unloaded AFTER the �xture.

13.6.1 De�ning a Fixture

To de�ne a �xture, create a new class by extending yii\test\Fixture or
yii\test\ActiveFixture. The former is best suited for general purpose
�xtures, while the latter has enhanced features speci�cally designed to work
with database and ActiveRecord.

The following code de�nes a �xture about the User ActiveRecord and the
corresponding user table.

<?php

namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserFixture extends ActiveFixture

{

public $modelClass = 'app\models\User';

}

12http://codeception.com/docs/03-AcceptanceTests

http://codeception.com/docs/03-AcceptanceTests

474 CHAPTER 13. TESTING

Tip: Each ActiveFixture is about preparing a DB table for test-
ing purpose. You may specify the table by setting either the yii
\test\ActiveFixture::tableName property or the yii\test\ActiveFixture
::modelClass property. If the latter, the table name will be
taken from the ActiveRecord class speci�ed by modelClass.

Note: yii\test\ActiveFixture is only suited for SQL data-
bases. For NoSQL databases, Yii provides the following ActiveFixture

classes:

• Mongo DB: yii\mongodb\ActiveFixture
• Elasticsearch: yii\elasticsearch\ActiveFixture (since
version 2.0.2)

The �xture data for an ActiveFixture �xture is usually provided in a �le
located at FixturePath/data/TableName.php, where FixturePath stands for the
directory containing the �xture class �le, and TableName is the name of the
table associated with the �xture. In the example above, the �le should be
@app/tests/fixtures/data/user.php. The data �le should return an array of
data rows to be inserted into the user table. For example,

<?php

return [

'user1' => [

'username' => 'lmayert',

'email' => 'strosin.vernice@jerde.com',

'auth_key' => 'K3nF70it7tzNsHddEiq0BZ0i-OU8S3xV',

'password' => '$2y$13$WSyE5hHsG1rWN2jV8LRHzubilrCLI5Ev/

iK0r3jRuwQEs2ldRu.a2',

],

'user2' => [

'username' => 'napoleon69',

'email' => 'aileen.barton@heaneyschumm.com',

'auth_key' => 'dZlXsVnIDgIzFgX4EduAqkEPuphhOh9q',

'password' => '$2y$13$kkgpvJ8lnjKo8RuoR30ay.RjDf15bMcHIF7Vz1zz/6

viYG5xJExU6',

],

];

You may give an alias to a row so that later in your test, you may refer to
the row via the alias. In the above example, the two rows are aliased as user1
and user2, respectively.

Also, you do not need to specify the data for auto-incremental columns.
Yii will automatically �ll the actual values into the rows when the �xture is
being loaded.

Tip: You may customize the location of the data �le by setting
the yii\test\ActiveFixture::dataFile property. You may
also override yii\test\ActiveFixture::getData() to provide
the data.

13.6. FIXTURES 475

As we described earlier, a �xture may depend on other �xtures. For ex-
ample, a UserProfileFixture may need to depends on UserFixture because the
user pro�le table contains a foreign key pointing to the user table. The
dependency is speci�ed via the yii\test\Fixture::depends property, like
the following,

namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserProfileFixture extends ActiveFixture

{

public $modelClass = 'app\models\UserProfile';

public $depends = ['app\tests\fixtures\UserFixture'];

}

The dependency also ensures, that the �xtures are loaded and unloaded in
a well de�ned order. In the above example UserFixture will always be loaded
before UserProfileFixture to ensure all foreign key references exist and will
be unloaded after UserProfileFixture has been unloaded for the same reason.

In the above, we have shown how to de�ne a �xture about a DB table.
To de�ne a �xture not related with DB (e.g. a �xture about certain �les
and directories), you may extend from the more general base class yii

\test\Fixture and override the yii\test\Fixture::load() and yii\test

\Fixture::unload() methods.

13.6.2 Using Fixtures

If you are using Codeception13 to test your code, you should consider using
the yii2-codeception extension which has built-in support for loading and
accessing �xtures. If you are using other testing frameworks, you may use
yii\test\FixtureTrait in your test cases to achieve the same goal.

In the following we will describe how to write a UserProfile unit test class
using yii2-codeception.

In your unit test class extending yii\codeception\DbTestCase or yii
\codeception\TestCase, declare which �xtures you want to use in the yii
\test\FixtureTrait::fixtures() method. For example,

namespace app\tests\unit\models;

use yii\codeception\DbTestCase;

use app\tests\fixtures\UserProfileFixture;

class UserProfileTest extends DbTestCase

{

public function fixtures()

{

return [

13http://codeception.com/

http://codeception.com/

476 CHAPTER 13. TESTING

'profiles' => UserProfileFixture::className(),

];

}

// ...test methods...

}

The �xtures listed in the fixtures() method will be automatically loaded
before running every test method in the test case and unloaded after �n-
ishing every test method. And as we described before, when a �xture is
being loaded, all its dependent �xtures will be automatically loaded �rst.
In the above example, because UserProfileFixture depends on UserFixture,
when running any test method in the test class, two �xtures will be loaded
sequentially: UserFixture and UserProfileFixture.

When specifying �xtures in fixtures(), you may use either a class name
or a con�guration array to refer to a �xture. The con�guration array will let
you customize the �xture properties when the �xture is loaded.

You may also assign an alias to a �xture. In the above example, the
UserProfileFixture is aliased as profiles. In the test methods, you may then
access a �xture object using its alias. For example, $this->profiles will return
the UserProfileFixture object.

Because UserProfileFixture extends from ActiveFixture, you may further
use the following syntax to access the data provided by the �xture:

// returns the data row aliased as 'user1'

$row = $this->profiles['user1'];

// returns the UserProfile model corresponding to the data row aliased as '

user1'

$profile = $this->profiles('user1');

// traverse every data row in the fixture

foreach ($this->profiles as $row) ...

Info: $this->profiles is still of UserProfileFixture type. The
above access features are implemented through PHP magic meth-
ods.

13.6.3 De�ning and Using Global Fixtures

The �xtures described above are mainly used by individual test cases. In
most cases, you also need some global �xtures that are applied to ALL or
many test cases. An example is yii\test\InitDbFixture which does two
things:

• Perform some common initialization tasks by executing a script located
at @app/tests/fixtures/initdb.php;

• Disable the database integrity check before loading other DB �xtures,
and re-enable it after other DB �xtures are unloaded.

13.6. FIXTURES 477

Using global �xtures is similar to using non-global ones. The only di�er-
ence is that you declare these �xtures in yii\codeception\TestCase::

globalFixtures() instead of fixtures(). When a test case loads �xtures, it
will �rst load global �xtures and then non-global ones.

By default, yii\codeception\DbTestCase already declares InitDbFixture
in its globalFixtures() method. This means you only need to work with @app

/tests/fixtures/initdb.php if you want to do some initialization work before
each test. You may otherwise simply focus on developing each individual
test case and the corresponding �xtures.

13.6.4 Organizing Fixture Classes and Data Files

By default, �xture classes look for the corresponding data �les under the
data folder which is a sub-folder of the folder containing the �xture class
�les. You can follow this convention when working with simple projects.
For big projects, chances are that you often need to switch di�erent data
�les for the same �xture class for di�erent tests. We thus recommend that
you organize the data �les in a hierarchical way that is similar to your class
namespaces. For example,

under folder tests\unit\fixtures

data\

components\

fixture_data_file1.php

fixture_data_file2.php

...

fixture_data_fileN.php

models\

fixture_data_file1.php

fixture_data_file2.php

...

fixture_data_fileN.php

and so on

In this way you will avoid collision of �xture data �les between tests and use
them as you need.

Note: In the example above �xture �les are named only for ex-
ample purpose. In real life you should name them according to
which �xture class your �xture classes are extending from. For
example, if you are extending from yii\test\ActiveFixture

for DB �xtures, you should use DB table names as the �x-
ture data �le names; If you are extending from yii\mongodb

\ActiveFixture for MongoDB �xtures, you should use collec-
tion names as the �le names.

The similar hierarchy can be used to organize �xture class �les. Instead of
using data as the root directory, you may want to use fixtures as the root

478 CHAPTER 13. TESTING

directory to avoid con�ict with the data �les.

13.6.5 Summary

Note: This section is under development.

In the above, we have described how to de�ne and use �xtures. Below we
summarize the typical work�ow of running unit tests related with DB:

1. Use yii migrate tool to upgrade your test database to the latest version;

2. Run a test case:

• Load �xtures: clean up the relevant DB tables and populate them
with �xture data;

• Perform the actual test;
• Unload �xtures.

3. Repeat Step 2 until all tests �nish.

To be cleaned up below

13.7 Managing Fixtures

Note: This section is under development.

todo: this tutorial may be merged with the above part of test-
�xtures.md

Fixtures are important part of testing. Their main purpose is to populate
you with data that needed by testing di�erent cases. With this data using
your tests becoming more e�cient and useful.

Yii supports �xtures via the yii fixture command line tool. This tool
supports:

• Loading �xtures to di�erent storage such as: RDBMS, NoSQL, etc;
• Unloading �xtures in di�erent ways (usually it is clearing storage);
• Auto-generating �xtures and populating it with random data.

13.7.1 Fixtures format

Fixtures are objects with di�erent methods and con�gurations, refer to o�-
cial documentation14 on them. Lets assume we have �xtures data to load:

14https://github.com/yiisoft/yii2/blob/master/docs/guide/test-fixtures.md

https://github.com/yiisoft/yii2/blob/master/docs/guide/test-fixtures.md

13.7. MANAGING FIXTURES 479

#users.php file under fixtures data path, by default @tests\unit\fixtures\

data

return [

[

'name' => 'Chase',

'login' => 'lmayert',

'email' => 'strosin.vernice@jerde.com',

'auth_key' => 'K3nF70it7tzNsHddEiq0BZ0i-OU8S3xV',

'password' => '$2y$13$WSyE5hHsG1rWN2jV8LRHzubilrCLI5Ev/

iK0r3jRuwQEs2ldRu.a2',

],

[

'name' => 'Celestine',

'login' => 'napoleon69',

'email' => 'aileen.barton@heaneyschumm.com',

'auth_key' => 'dZlXsVnIDgIzFgX4EduAqkEPuphhOh9q',

'password' => '$2y$13$kkgpvJ8lnjKo8RuoR30ay.RjDf15bMcHIF7Vz1zz/6

viYG5xJExU6',

],

];

If we are using �xture that loads data into database then these rows will be
applied to users table. If we are using nosql �xtures, for example mongodb

�xture, then this data will be applied to users mongodb collection. In order
to learn about implementing various loading strategies and more, refer to
o�cial documentation15. Above �xture example was auto-generated by yii2

-faker extension, read more about it in these section. Fixture classes name
should not be plural.

13.7.2 Loading �xtures

Fixture classes should be su�xed by Fixture class. By default �xtures will be
searched under tests\unit\fixtures namespace, you can change this behavior
with con�g or command options. You can exclude some �xtures due load or
unload by specifying - before its name like -User.

To load �xture, run the following command:

yii fixture/load <fixture_name>

The required fixture_name parameter speci�es a �xture name which data will
be loaded. You can load several �xtures at once. Below are correct formats
of this command:

// load `User` fixture

yii fixture/load User

// same as above, because default action of "fixture" command is "load"

yii fixture User

15https://github.com/yiisoft/yii2/blob/master/docs/guide/test-fixtures.md

https://github.com/yiisoft/yii2/blob/master/docs/guide/test-fixtures.md

480 CHAPTER 13. TESTING

// load several fixtures

yii fixture "User, UserProfile"

// load all fixtures

yii fixture/load "*"

// same as above

yii fixture "*"

// load all fixtures except ones

yii fixture "*, -DoNotLoadThisOne"

// load fixtures, but search them in different namespace. By default

namespace is: tests\unit\fixtures.

yii fixture User --namespace='alias\my\custom\namespace'

// load global fixture `some\name\space\CustomFixture` before other fixtures

will be loaded.

// By default this option is set to `InitDbFixture` to disable/enable

integrity checks. You can specify several

// global fixtures separated by comma.

yii fixture User --globalFixtures='some\name\space\Custom'

13.7.3 Unloading �xtures

To unload �xture, run the following command:

// unload Users fixture, by default it will clear fixture storage (for

example "users" table, or "users" collection if this is mongodb fixture

).

yii fixture/unload User

// Unload several fixtures

yii fixture/unload "User, UserProfile"

// unload all fixtures

yii fixture/unload "*"

// unload all fixtures except ones

yii fixture/unload "*, -DoNotUnloadThisOne"

Same command options like: namespace, globalFixtures also can be applied to
this command.

13.7.4 Con�gure Command Globally

While command line options allow us to con�gure the migration command
on-the-�y, sometimes we may want to con�gure the command once for all.
For example you can con�gure di�erent migration path as follows:

'controllerMap' => [

'fixture' => [

'class' => 'yii\console\controllers\FixtureController',

13.7. MANAGING FIXTURES 481

'namespace' => 'myalias\some\custom\namespace',

'globalFixtures' => [

'some\name\space\Foo',

'other\name\space\Bar'

],

],

]

13.7.5 Auto-generating �xtures

Yii also can auto-generate �xtures for you based on some template. You
can generate your �xtures with di�erent data on di�erent languages and
formats. This feature is done by Faker16 library and yii2-faker extension.
See extension guide17 for more docs.

16https://github.com/fzaninotto/Faker
17https://github.com/yiisoft/yii2-faker

https://github.com/fzaninotto/Faker
https://github.com/yiisoft/yii2-faker

482 CHAPTER 13. TESTING

Chapter 14

Special Topics

483

484 CHAPTER 14. SPECIAL TOPICS

Error: not existing �le: https://github.com/yiisoft/yii2-app-
advanced/blob/master/docs/guide/README.md

14.1. CREATING YOUR OWN APPLICATION STRUCTURE 485

14.1 Creating your own Application structure

Note: This section is under development.

While the basic1 and advanced2 project templates are great for most of your
needs, you may want to create your own project template with which to start
your projects.

Project templates in Yii are simply repositories containing a composer.json

�le, and registered as a Composer package. Any repository can be identi�ed
as a Composer package, making it installable via create-project Composer
command.

Since it's a bit too much to start building your entire template from
scratch, it is better to use one of the built-in templates as a base. Let's use
the basic template here.

14.1.1 Clone the Basic Template

The �rst step is to clone the basic Yii template's Git repository:

git clone git@github.com:yiisoft/yii2-app-basic.git

Then wait for the repository to be downloaded to your computer. Since the
changes made to the template won't be pushed back, you can delete the .git

directory and all of its contents from the download.

14.1.2 Modify the Files

Next, you'll want to modify the composer.json to re�ect your template. Change
the name, description, keywords, homepage, license, and support values to de-
scribe your new template. Also adjust the require, require-dev, suggest, and
other options to match your template's requirements.

Note: In the composer.json �le, use the writable parameter under
extra to specify per �le permissions to be set after an application
is created using the template.

Next, actually modify the structure and contents of the application as you
would like the default to be. Finally, update the README �le to be applic-
able to your template.

14.1.3 Make a Package

With the template de�ned, create a Git repository from it, and push your
�les there. If you're going to open source your template, Github3 is the best

1https://github.com/yiisoft/yii2-app-basic
2https://github.com/yiisoft/yii2-app-advanced
3http://github.com

https://github.com/yiisoft/yii2-app-basic
https://github.com/yiisoft/yii2-app-advanced
http://github.com

486 CHAPTER 14. SPECIAL TOPICS

place to host it. If you intend to keep your template non-collaborative, any
Git repository site will do.

Next, you need to register your package for Composer's sake. For public
templates, the package should be registered at Packagist4. For private tem-
plates, it is a bit more tricky to register the package. For instructions, see
the Composer documentation5.

14.1.4 Use the Template

That's all that's required to create a new Yii project template. Now you can
create projects using your template:

composer global require "fxp/composer-asset-plugin:^1.2.0"

composer create-project --prefer-dist --stability=dev mysoft/yii2-app-

coolone new-project

14.2 Console applications

Besides the rich features for building web applications, Yii also has full-
featured support for console applications which are mainly used to create
background and maintenance tasks that need to be performed for a website.

The structure of console applications is very similar to a Yii web applica-
tion. It consists of one or more yii\console\Controller classes, which are
often referred to as commands in the console environment. Each controller
can also have one or more actions, just like web controllers.

Both project templates already have a console application with them.
You can run it by calling the yii script, which is located in the base directory
of the repository. This will give you a list of available commands when you
run it without any further parameters:

4https://packagist.org/
5https://getcomposer.org/doc/05-repositories.md#hosting-your-own

https://packagist.org/
https://getcomposer.org/doc/05-repositories.md#hosting-your-own

14.2. CONSOLE APPLICATIONS 487

As you can see in the screenshot, Yii has already de�ned a set of com-
mands that are available by default:

• yii\console\controllers\AssetController - Allows you to com-
bine and compress your JavaScript and CSS �les. You can learn more
about this command in the Assets Section.

• yii\console\controllers\CacheController - Allows you to �ush
application caches.

• yii\console\controllers\FixtureController - Manages �xture data
loading and unloading for testing purposes. This command is described
in more detail in the Testing Section about Fixtures.

• yii\console\controllers\HelpController - Provides help informa-
tion about console commands, this is the default command and prints
what you have seen in the above output.

• yii\console\controllers\MessageController - Extracts messages
to be translated from source �les. To learn more about this command,
please refer to the I18N Section.

• yii\console\controllers\MigrateController - Manages application
migrations. Database migrations are described in more detail in the
Database Migration Section.

• yii\console\controllers\ServeController - Allows you run PHP
built-in web server.

488 CHAPTER 14. SPECIAL TOPICS

14.2.1 Usage

You execute a console controller action using the following syntax:

yii <route> [--option1=value1 --option2=value2 ... argument1 argument2 ...]

In the above, <route> refers to the route to the controller action. The options
will populate the class properties and arguments are the parameters of the
action method.

For example, the yii\console\controllers\MigrateController::actionUp()
with yii\console\controllers\MigrateController::$migrationTable set
to migrations and a limit of 5 migrations can be called like so:

yii migrate/up 5 --migrationTable=migrations

Note: When using * in console, don't forget to quote it as "*" in
order to avoid executing it as a shell glob that will be replaced
by all �le names of the current directory.

14.2.2 The entry script

The console application entry script is equivalent to the index.php bootstrap
�le used for the web application. The console entry script is typically called
yii, and located in your application's root directory. It contains code like
the following:

#!/usr/bin/env php

<?php

/**

* Yii console bootstrap file.

*/

defined('YII_DEBUG') or define('YII_DEBUG', true);

defined('YII_ENV') or define('YII_ENV', 'dev');

require(__DIR__ . '/vendor/autoload.php');

require(__DIR__ . '/vendor/yiisoft/yii2/Yii.php');

$config = require(__DIR__ . '/config/console.php');

$application = new yii\console\Application($config);

$exitCode = $application->run();

exit($exitCode);

This script will be created as part of your application; you're free to edit it
to suit your needs. The YII_DEBUG constant can be set to false if you do not
want to see a stack trace on error, and/or if you want to improve the overall
performance. In both basic and advanced application templates, the console
application entry script has debugging enabled by default to provide a more
developer-friendly environment.

14.2. CONSOLE APPLICATIONS 489

14.2.3 Con�guration

As can be seen in the code above, the console application uses its own con-
�guration �le, named console.php. In this �le you should con�gure various
application components and properties for the console application in partic-
ular.

If your web application and console application share a lot of con�gur-
ation parameters and values, you may consider moving the common parts
into a separate �le, and including this �le in both of the application con�g-
urations (web and console). You can see an example of this in the advanced
project template.

Tip: Sometimes, you may want to run a console command using
an application con�guration that is di�erent from the one spe-
ci�ed in the entry script. For example, you may want to use the
yii migrate command to upgrade your test databases, which are
con�gured in each individual test suite. To change the con�gur-
ation dynamically, simply specify a custom application con�gur-
ation �le via the appconfig option when executing the command:

yii <route> --appconfig=path/to/config.php ...

14.2.4 Console command completion

Auto-completion of command arguments is a useful thing when working with
the shell. Since version 2.0.11, the ./yii command provides auto completion
for the Bash and ZSH out of the box.

Bash completion

Make sure bash completion is installed. For most of installations it is avail-
able by default.

Place the completion script in /etc/bash_completion.d/:

curl -L https://raw.githubusercontent.com/yiisoft/yii2/master/contrib/

completion/bash/yii -o /etc/bash_completion.d/yii

For temporary usage you can put the �le into the current directory and
include it in the current session via source yii. If globally installed you may
need to restart the terminal or source ~/.bashrc to activate it.

Check the Bash Manual6 for other ways of including completion script
to your environment.

6https://www.gnu.org/software/bash/manual/html_node/

Programmable-Completion.html

https://www.gnu.org/software/bash/manual/html_node/Programmable-Completion.html
https://www.gnu.org/software/bash/manual/html_node/Programmable-Completion.html

490 CHAPTER 14. SPECIAL TOPICS

ZSH completion

Put the completion script in directory for completions, using e.g. ~/.zsh/

completion/

mkdir -p ~/.zsh/completion

curl -L https://raw.githubusercontent.com/yiisoft/yii2/master/contrib/

completion/zsh/_yii -o ~/.zsh/completion/_yii

Include the directory in the $fpath, e.g. by adding it to ~/.zshrc

fpath=(~/.zsh/completion $fpath)

Make sure compinit is loaded or do it by adding in ~/.zshrc

autoload -Uz compinit && compinit -i

Then reload your shell

exec $SHELL -l

14.2.5 Creating your own console commands

Console Controller and Action

A console command is de�ned as a controller class extending from yii

\console\Controller. In the controller class, you de�ne one or more actions
that correspond to sub-commands of the controller. Within each action, you
write code that implements the appropriate tasks for that particular sub-
command.

When running a command, you need to specify the route to the controller
action. For example, the route migrate/create invokes the sub-command
that corresponds to the yii\console\controllers\MigrateController::

actionCreate() action method. If a route o�ered during execution does
not contain an action ID, the default action will be executed (as with a web
controller).

Options

By overriding the yii\console\Controller::options() method, you can
specify options that are available to a console command (controller/actionID).
The method should return a list of the controller class's public properties.
When running a command, you may specify the value of an option using the
syntax --optionName=optionValue. This will assign optionValue to the optionName
property of the controller class.

If the default value of an option is of an array type and you set this
option while running the command, the option value will be converted into
an array by splitting the input string on any commas.

14.2. CONSOLE APPLICATIONS 491

Options Aliases

Since version 2.0.8 console command provides yii\console\Controller::
optionAliases() method to add aliases for options.

To de�ne an alias, override yii\console\Controller::optionAliases()
in your controller, for example:

namespace app\commands;

use yii\console\Controller;

class HelloController extends Controller

{

public $message;

public function options($actionID)

{

return ['message'];

}

public function optionAliases()

{

return ['m' => 'message'];

}

public function actionIndex()

{

echo $this->message . "\n";

}

}

Now, you can use the following syntax to run the command:

yii hello -m=hello

Arguments

Besides options, a command can also receive arguments. The arguments
will be passed as the parameters to the action method corresponding to
the requested sub-command. The �rst argument corresponds to the �rst
parameter, the second corresponds to the second, and so on. If not enough
arguments are provided when the command is called, the corresponding para-
meters will take the declared default values, if de�ned. If no default value
is set, and no value is provided at runtime, the command will exit with an
error.

You may use the array type hint to indicate that an argument should be
treated as an array. The array will be generated by splitting the input string
on commas.

The following example shows how to declare arguments:

class ExampleController extends \yii\console\Controller

492 CHAPTER 14. SPECIAL TOPICS

{

// The command "yii example/create test" will call "actionCreate('test')

"

public function actionCreate($name) { ... }

// The command "yii example/index city" will call "actionIndex('city', '

name')"

// The command "yii example/index city id" will call "actionIndex('city

', 'id')"

public function actionIndex($category, $order = 'name') { ... }

// The command "yii example/add test" will call "actionAdd(['test'])"

// The command "yii example/add test1,test2" will call "actionAdd(['

test1', 'test2'])"

public function actionAdd(array $name) { ... }

}

Exit Code

Using exit codes is a best practice for console application development. Con-
ventionally, a command returns 0 to indicate that everything is OK. If the
command returns a number greater than zero, that's considered to be indic-
ative of an error. The number returned will be the error code, potentially
usable to �nd out details about the error. For example 1 could stand gener-
ally for an unknown error and all codes above would be reserved for speci�c
cases: input errors, missing �les, and so forth.

To have your console command return an exit code, simply return an
integer in the controller action method:

public function actionIndex()

{

if (/* some problem */) {

echo "A problem occurred!\n";

return 1;

}

// do something

return 0;

}

There are some prede�ned constants you can use:

• yii\console\Controller::EXIT_CODE_NORMAL with value of 0;
• yii\console\Controller::EXIT_CODE_ERROR with value of 1.

It's a good practice to de�ne meaningful constants for your controller in case
you have more error code types.

Formatting and colors

Yii console supports formatted output that is automatically degraded to
non-formatted one if it's not supported by terminal running the command.

14.3. CORE VALIDATORS 493

Outputting formatted strings is simple. Here's how to output some bold
text:

$this->stdout("Hello?\n", Console::BOLD);

If you need to build string dynamically combining multiple styles it's better
to use yii\helpers\Console::ansiFormat():

$name = $this->ansiFormat('Alex', Console::FG_YELLOW);

echo "Hello, my name is $name.";

14.3 Core Validators

Yii provides a set of commonly used core validators, found primarily un-
der the yii\validators namespace. Instead of using lengthy validator class
names, you may use aliases to specify the use of these core validators. For
example, you can use the alias required to refer to the yii\validators

\RequiredValidator class:

public function rules()

{

return [

[['email', 'password'], 'required'],

];

}

The yii\validators\Validator::builtInValidators property declares all
supported validator aliases.

In the following, we will describe the main usage and properties of every
core validator.

14.3.1 yii\validators\BooleanValidator

[

// checks if "selected" is either 0 or 1, regardless of data type

['selected', 'boolean'],

// checks if "deleted" is of boolean type, either true or false

['deleted', 'boolean', 'trueValue' => true, 'falseValue' => false, '

strict' => true],

]

This validator checks if the input value is a boolean.
• trueValue: the value representing true. Defaults to '1'.
• falseValue: the value representing false. Defaults to '0'.
• strict: whether the type of the input value should match that of

trueValue and falseValue. Defaults to false.

Note: Because data input submitted via HTML forms are all
strings, you normally should leave the yii\validators\BooleanValidator
::strict property as false.

494 CHAPTER 14. SPECIAL TOPICS

14.3.2 yii\captcha\CaptchaValidator

[

['verificationCode', 'captcha'],

]

This validator is usually used together with yii\captcha\CaptchaAction

and yii\captcha\Captcha to make sure an input is the same as the veri�c-
ation code displayed by yii\captcha\Captcha widget.

• caseSensitive: whether the comparison of the veri�cation code is case
sensitive. Defaults to false.

• captchaAction: the route corresponding to the yii\captcha\CaptchaAction
that renders the CAPTCHA image. Defaults to 'site/captcha'.

• skipOnEmpty: whether the validation can be skipped if the input is
empty. Defaults to false, which means the input is required.

14.3.3 yii\validators\CompareValidator

[

// validates if the value of "password" attribute equals to that of "

password_repeat"

['password', 'compare'],

// same as above but with explicitly specifying the attribute to compare

with

['password', 'compare', 'compareAttribute' => 'password_repeat'],

// validates if age is greater than or equal to 30

['age', 'compare', 'compareValue' => 30, 'operator' => '>=', 'type' => '

number'],

]

This validator compares the speci�ed input value with another one and make
sure if their relationship is as speci�ed by the operator property.

• compareAttribute: the name of the attribute whose value should be com-
pared with. When the validator is being used to validate an attribute,
the default value of this property would be the name of the attribute
su�xed with _repeat. For example, if the attribute being validated is
password, then this property will default to password_repeat.

• compareValue: a constant value that the input value should be compared
with. When both of this property and compareAttribute are speci�ed,
this property will take precedence.

• operator: the comparison operator. Defaults to ==, meaning checking
if the input value is equal to that of compareAttribute or compareValue.
The following operators are supported:
� ==: check if two values are equal. The comparison is done is non-
strict mode.

14.3. CORE VALIDATORS 495

� ===: check if two values are equal. The comparison is done is strict
mode.

� !=: check if two values are NOT equal. The comparison is done
is non-strict mode.

� !==: check if two values are NOT equal. The comparison is done
is strict mode.

� >: check if value being validated is greater than the value being
compared with.

� >=: check if value being validated is greater than or equal to the
value being compared with.

� <: check if value being validated is less than the value being com-
pared with.

� <=: check if value being validated is less than or equal to the value
being compared with.

• type: The default comparison type is `yii\validators\CompareValidator
::TYPE_STRING`, which means the values are compared byte by byte.
When comparing numbers, make sure to set the yii\validators\CompareValidator
::$type to `yii\validators\CompareValidator::TYPE_NUMBER` to en-
able numeric comparison.

Comparing date values

The compare validator can only be used to compare strings and numbers.
If you need to compare values like dates you have two options. For com-
paring a date against a �xed value, you can simply use the yii\validators
\DateValidator validator and specify its yii\validators\DateValidator
::$min or yii\validators\DateValidator::$max property. If you need to
compare two dates entered in the form, e.g. a fromDate and a toDate �eld,
you can use a combination of compare and date validator like the following:

['fromDate', 'date', 'timestampAttribute' => 'fromDate'],

['toDate', 'date', 'timestampAttribute' => 'toDate'],

['fromDate', 'compare', 'compareAttribute' => 'toDate', 'operator' => '<', '

enableClientValidation' => false],

As validators are executed in the order they are speci�ed this will �rst valid-
ate that the values entered in fromDate and toDate are valid date values and
if so, they will be converted into a machine readable format. Afterwards
these two values are compared with the compare validator. Client validation
is not enabled as this will only work on the server-side because the date
validator currently does not provide client validation, so yii\validators

\CompareValidator::$enableClientValidation is set to false on the com-
pare validator too.

496 CHAPTER 14. SPECIAL TOPICS

14.3.4 yii\validators\DateValidator

The yii\validators\DateValidator validator comes with three di�erent
shortcuts:

[

[['from_date', 'to_date'], 'date'],

[['from_datetime', 'to_datetime'], 'datetime'],

[['some_time'], 'time'],

]

This validator checks if the input value is a date, time or datetime in a proper
format. Optionally, it can convert the input value into a UNIX timestamp
or other machine readable format and store it in an attribute speci�ed via
yii\validators\DateValidator::timestampAttribute.

• format: the date/time format that the value being validated should be
in. This can be a date time pattern as described in the ICU manual7.
Alternatively this can be a string pre�xed with php: representing a
format that can be recognized by the PHP Datetime class. Please refer
to http://php.net/manual/en/datetime.createfromformat.php on
supported formats. If this is not set, it will take the value of Yii::$app
->formatter->dateFormat. See the yii\validators\DateValidator::

$format for more details.
• timestampAttribute: the name of the attribute to which this validator
may assign the UNIX timestamp converted from the input date/time.
This can be the same attribute as the one being validated. If this is the
case, the original value will be overwritten with the timestamp value
after validation. See �Handling date input with the DatePicker�8 for a
usage example.
Since version 2.0.4, a format and timezone can be speci�ed for this at-
tribute using yii\validators\DateValidator::$timestampAttributeFormat
and yii\validators\DateValidator::$timestampAttributeTimeZone.
Note, that when using timestampAttribute, the input value will be con-
verted to a unix timestamp, which by de�nition is in UTC, so a con-
version from the yii\validators\DateValidator::timeZone to UTC
will be performed.

• Since version 2.0.4 it is also possible to specify a yii\validators

\DateValidator::$min or yii\validators\DateValidator::$max timestamp.

In case the input is optional you may also want to add a default value �lter
in addition to the date validator to ensure empty input is stored as null.
Otherwise you may end up with dates like 0000-00-00 in your database or
1970-01-01 in the input �eld of a date picker.

7http://userguide.icu-project.org/formatparse/datetime#

TOC-Date-Time-Format-Syntax
8https://github.com/yiisoft/yii2-jui/blob/master/docs/guide/

topics-date-picker.md

http://php.net/manual/en/datetime.createfromformat.php
http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax
http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax
https://github.com/yiisoft/yii2-jui/blob/master/docs/guide/topics-date-picker.md
https://github.com/yiisoft/yii2-jui/blob/master/docs/guide/topics-date-picker.md

14.3. CORE VALIDATORS 497

[

[['from_date', 'to_date'], 'default', 'value' => null],

[['from_date', 'to_date'], 'date'],

],

14.3.5 yii\validators\DefaultValueValidator

[

// set "age" to be null if it is empty

['age', 'default', 'value' => null],

// set "country" to be "USA" if it is empty

['country', 'default', 'value' => 'USA'],

// assign "from" and "to" with a date 3 days and 6 days from today, if

they are empty

[['from', 'to'], 'default', 'value' => function ($model, $attribute) {

return date('Y-m-d', strtotime($attribute === 'to' ? '+3 days' : '+6

days'));

}],

]

This validator does not validate data. Instead, it assigns a default value to
the attributes being validated if the attributes are empty.

• value: the default value or a PHP callable that returns the default
value which will be assigned to the attributes being validated if they
are empty. The signature of the PHP callable should be as follows,

function foo($model, $attribute) {

// ... compute $value ...

return $value;

}

Info: How to determine if a value is empty or not is a separate
topic covered in the Empty Values section.

14.3.6 yii\validators\NumberValidator

[

// checks if "salary" is a double number

['salary', 'double'],

]

This validator checks if the input value is a double number. It is equivalent
to the number validator.

• max: the upper limit (inclusive) of the value. If not set, it means the
validator does not check the upper limit.

• min: the lower limit (inclusive) of the value. If not set, it means the
validator does not check the lower limit.

498 CHAPTER 14. SPECIAL TOPICS

14.3.7 yii\validators\EachValidator

Info: This validator has been available since version 2.0.4.

[

// checks if every category ID is an integer

['categoryIDs', 'each', 'rule' => ['integer']],

]

This validator only works with an array attribute. It validates if every ele-
ment of the array can be successfully validated by a speci�ed validation rule.
In the above example, the categoryIDs attribute must take an array value
and each array element will be validated by the integer validation rule.

• rule: an array specifying a validation rule. The �rst element in the
array speci�es the class name or the alias of the validator. The rest of
the name-value pairs in the array are used to con�gure the validator
object.

• allowMessageFromRule: whether to use the error message returned by the
embedded validation rule. Defaults to true. If false, it will use message

as the error message.

Note: If the attribute value is not an array, it is considered val-
idation fails and the message will be returned as the error message.

14.3.8 yii\validators\EmailValidator

[

// checks if "email" is a valid email address

['email', 'email'],

]

This validator checks if the input value is a valid email address.

• allowName: whether to allow name in the email address (e.g. John Smith

<john.smith@example.com>). Defaults to false.
• checkDNS, whether to check whether the email's domain exists and has
either an A or MX record. Be aware that this check may fail due to
temporary DNS problems, even if the email address is actually valid.
Defaults to false.

• enableIDN, whether the validation process should take into account IDN
(internationalized domain names). Defaults to false. Note that in
order to use IDN validation you have to install and enable the intl

PHP extension, or an exception would be thrown.

14.3.9 yii\validators\ExistValidator

14.3. CORE VALIDATORS 499

[

// a1 needs to exist in the column represented by the "a1" attribute

['a1', 'exist'],

// a1 needs to exist, but its value will use a2 to check for the

existence

['a1', 'exist', 'targetAttribute' => 'a2'],

// a1 and a2 need to exist together, and they both will receive error

message

[['a1', 'a2'], 'exist', 'targetAttribute' => ['a1', 'a2']],

// a1 and a2 need to exist together, only a1 will receive error message

['a1', 'exist', 'targetAttribute' => ['a1', 'a2']],

// a1 needs to exist by checking the existence of both a2 and a3 (using

a1 value)

['a1', 'exist', 'targetAttribute' => ['a2', 'a1' => 'a3']],

// a1 needs to exist. If a1 is an array, then every element of it must

exist.

['a1', 'exist', 'allowArray' => true],

]

This validator checks if the input value can be found in a table column
represented by an Active Record attribute. You can use targetAttribute to
specify the Active Record attribute and targetClass the corresponding Active
Record class. If you do not specify them, they will take the values of the
attribute and the model class being validated.

You can use this validator to validate against a single column or multiple
columns (i.e., the combination of multiple attribute values should exist).

• targetClass: the name of the Active Record class that should be used
to look for the input value being validated. If not set, the class of the
model currently being validated will be used.

• targetAttribute: the name of the attribute in targetClass that should
be used to validate the existence of the input value. If not set, it will
use the name of the attribute currently being validated. You may use
an array to validate the existence of multiple columns at the same
time. The array values are the attributes that will be used to validate
the existence, while the array keys are the attributes whose values are
to be validated. If the key and the value are the same, you can just
specify the value.

• filter: additional �lter to be applied to the DB query used to check
the existence of the input value. This can be a string or an array
representing the additional query condition (refer to yii\db\Query::

where() on the format of query condition), or an anonymous function
with the signature function ($query), where $query is the yii\db\Query
object that you can modify in the function.

500 CHAPTER 14. SPECIAL TOPICS

• allowArray: whether to allow the input value to be an array. Defaults to
false. If this property is true and the input is an array, then every ele-
ment of the array must exist in the target column. Note that this prop-
erty cannot be set true if you are validating against multiple columns
by setting targetAttribute as an array.

14.3.10 yii\validators\FileValidator

[

// checks if "primaryImage" is an uploaded image file in PNG, JPG or GIF

format.

// the file size must be less than 1MB

['primaryImage', 'file', 'extensions' => ['png', 'jpg', 'gif'], 'maxSize

' => 1024*1024],

]

This validator checks if the input is a valid uploaded �le.

• extensions: a list of �le name extensions that are allowed to be up-
loaded. This can be either an array or a string consisting of �le exten-
sion names separated by space or comma (e.g. �gif, jpg�). Extension
names are case-insensitive. Defaults to null, meaning all �le name
extensions are allowed.

• mimeTypes: a list of �le MIME types that are allowed to be uploaded.
This can be either an array or a string consisting of �le MIME types
separated by space or comma (e.g. �image/jpeg, image/png�). The
wildcard mask with the special character * can be used to match groups
of mime types. For example image/* will pass all mime types, that
begin with image/ (e.g. image/jpeg, image/png). Mime type names are
case-insensitive. Defaults to null, meaning all MIME types are allowed.
For more details, please refer to common media types9.

• minSize: the minimum number of bytes required for the uploaded �le.
Defaults to null, meaning no lower limit.

• maxSize: the maximum number of bytes allowed for the uploaded �le.
Defaults to null, meaning no upper limit.

• maxFiles: the maximum number of �les that the given attribute can
hold. Defaults to 1, meaning the input must be a single uploaded �le.
If it is greater than 1, then the input must be an array consisting of at
most maxFiles number of uploaded �les.

• checkExtensionByMimeType: whether to check the �le extension by the
�le's MIME type. If the extension produced by MIME type check
di�ers from the uploaded �le extension, the �le will be considered as
invalid. Defaults to true, meaning perform such check.

9http://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_

types

http://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types
http://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types

14.3. CORE VALIDATORS 501

FileValidator is used together with yii\web\UploadedFile. Please refer to
the Uploading Files section for complete coverage about uploading �les and
performing validation about the uploaded �les.

14.3.11 yii\validators\FilterValidator

[

// trim "username" and "email" inputs

[['username', 'email'], 'filter', 'filter' => 'trim', 'skipOnArray' =>

true],

// normalize "phone" input

['phone', 'filter', 'filter' => function ($value) {

// normalize phone input here

return $value;

}],

]

This validator does not validate data. Instead, it applies a �lter on the input
value and assigns it back to the attribute being validated.

• filter: a PHP callback that de�nes a �lter. This can be a global
function name, an anonymous function, etc. The function signature
must be function ($value) { return $newValue; }. This property must
be set.

• skipOnArray: whether to skip the �lter if the input value is an array.
Defaults to false. Note that if the �lter cannot handle array input,
you should set this property to be true. Otherwise some PHP error
might occur.

Tip: If you want to trim input values, you may directly use the
trim validator.

Tip: There are many PHP functions that have the signature ex-
pected for the filter callback. For example to apply type casting
(using e.g. intval10, boolval11, . . .) to ensure a speci�c type for
an attribute, you can simply specify the function names of the
�lter without the need to wrap them in a closure:

['property', 'filter', 'filter' => 'boolval'],

['property', 'filter', 'filter' => 'intval'],

14.3.12 yii\validators\ImageValidator

10http://php.net/manual/en/function.intval.php
11http://php.net/manual/en/function.boolval.php

http://php.net/manual/en/function.intval.php
http://php.net/manual/en/function.boolval.php

502 CHAPTER 14. SPECIAL TOPICS

[

// checks if "primaryImage" is a valid image with proper size

['primaryImage', 'image', 'extensions' => 'png, jpg',

'minWidth' => 100, 'maxWidth' => 1000,

'minHeight' => 100, 'maxHeight' => 1000,

],

]

This validator checks if the input value represents a valid image �le. It
extends from the �le validator and thus inherits all its properties. Besides,
it supports the following additional properties speci�c for image validation
purpose:

• minWidth: the minimum width of the image. Defaults to null, meaning
no lower limit.

• maxWidth: the maximum width of the image. Defaults to null, meaning
no upper limit.

• minHeight: the minimum height of the image. Defaults to null, meaning
no lower limit.

• maxHeight: the maximum height of the image. Defaults to null, meaning
no upper limit.

14.3.13 yii\validators\IpValidator

[

// checks if "ip_address" is a valid IPv4 or IPv6 address

['ip_address', 'ip'],

// checks if "ip_address" is a valid IPv6 address or subnet,

// value will be expanded to full IPv6 notation.

['ip_address', 'ip', 'ipv4' => false, 'subnet' => null, 'expandIPv6' =>

true],

// checks if "ip_address" is a valid IPv4 or IPv6 address,

// allows negation character `!` at the beginning

['ip_address', 'ip', 'negation' => true],

]

The validator checks if the attribute value is a valid IPv4/IPv6 address
or subnet. It also may change attribute's value if normalization or IPv6
expansion is enabled.

The validator has such con�guration options:
• ipv4: whether the validating value can be an IPv4 address. Defaults
to true.

• ipv6: whether the validating value can be an IPv6 address. Defaults
to true.

• subnet: whether the address can be an IP with CIDR subnet, like
192.168.10.0/24

� true - the subnet is required, addresses without CIDR will be
rejected

14.3. CORE VALIDATORS 503

� false - the address can not have the CIDR
� null - the CIDR is optional

Defaults to false.
• normalize: whether to add the CIDR pre�x with the smallest length
(32 for IPv4 and 128 for IPv6) to an address without it. Works only
when subnet is not false. For example:
� 10.0.1.5 will normalized to 10.0.1.5/32

� 2008:db0::1 will be normalized to 2008:db0::1/128

Defaults to false.
• negation: whether the validation address can have a negation character

! at the beginning. Defaults to false.
• expandIPv6: whether to expand an IPv6 address to the full notation
format. For example, 2008:db0::1 will be expanded to 2008:0db0:0000:0000:0000:0000:0000:0001

. Defaults to false.
• ranges: array of IPv4 or IPv6 ranges that are allowed or forbidden.
When the array is empty, or the option is not set, all the IP addresses
are allowed. Otherwise, the rules are checked sequentially until the
�rst match is found. IP address is forbidden, when it has not matched
any of the rules.
For example: `php [

'client_ip', 'ip', 'ranges' => [

'192.168.10.128'

'!192.168.10.0/24',

'any' // allows any other IP addresses

]

] ` In this example, access is allowed for all the IPv4 and IPv6 addresses
excluding 192.168.10.0/24 subnet. IPv4 address 192.168.10.128 is also
allowed, because it is listed before the restriction.

• networks: array of network aliases, that can be used in ranges. Format
of array:
� key - alias name
� value - array of strings. String can be a range, IP address or an-
other alias. String can be negated with ! (independent of negation
option).

The following aliases are de�ned by default:
� *: any

� any: 0.0.0.0/0, ::/0

� private: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, fd00::/8

� multicast: 224.0.0.0/4, ff00::/8

� linklocal: 169.254.0.0/16, fe80::/10

� localhost: 127.0.0.0/8', ::1

� documentation: 192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24, 2001:

db8::/32

� system: multicast, linklocal, localhost, documentation

504 CHAPTER 14. SPECIAL TOPICS

Info: This validator has been available since version 2.0.7.

14.3.14 yii\validators\RangeValidator

[

// checks if "level" is 1, 2 or 3

['level', 'in', 'range' => [1, 2, 3]],

]

This validator checks if the input value can be found among the given list of
values.

• range: a list of given values within which the input value should be
looked for.

• strict: whether the comparison between the input value and the given
values should be strict (both the type and value must be the same).
Defaults to false.

• not: whether the validation result should be inverted. Defaults to false

. When this property is set true, the validator checks if the input value
is NOT among the given list of values.

• allowArray: whether to allow the input value to be an array. When this
is true and the input value is an array, every element in the array must
be found in the given list of values, or the validation would fail.

14.3.15 yii\validators\NumberValidator

[

// checks if "age" is an integer

['age', 'integer'],

]

This validator checks if the input value is an integer.
• max: the upper limit (inclusive) of the value. If not set, it means the
validator does not check the upper limit.

• min: the lower limit (inclusive) of the value. If not set, it means the
validator does not check the lower limit.

14.3.16 yii\validators\RegularExpressionValidator

[

// checks if "username" starts with a letter and contains only word

characters

['username', 'match', 'pattern' => '/^[a-z]\w*$/i']

]

This validator checks if the input value matches the speci�ed regular expres-
sion.

• pattern: the regular expression that the input value should match. This
property must be set, or an exception will be thrown.

14.3. CORE VALIDATORS 505

• not: whether to invert the validation result. Defaults to false, meaning
the validation succeeds only if the input value matches the pattern. If
this is set true, the validation is considered successful only if the input
value does NOT match the pattern.

14.3.17 yii\validators\NumberValidator

[

// checks if "salary" is a number

['salary', 'number'],

]

This validator checks if the input value is a number. It is equivalent to the
double validator.

• max: the upper limit (inclusive) of the value. If not set, it means the
validator does not check the upper limit.

• min: the lower limit (inclusive) of the value. If not set, it means the
validator does not check the lower limit.

14.3.18 yii\validators\RequiredValidator

[

// checks if both "username" and "password" are not empty

[['username', 'password'], 'required'],

]

This validator checks if the input value is provided and not empty.

• requiredValue: the desired value that the input should be. If not set, it
means the input should not be empty.

• strict: whether to check data types when validating a value. Defaults
to false. When requiredValue is not set, if this property is true, the
validator will check if the input value is not strictly null; If this property
is false, the validator will use a loose rule to determine a value is empty
or not. When requiredValue is set, the comparison between the input
and requiredValue will also check data types if this property is true.

Info: How to determine if a value is empty or not is a separate
topic covered in the Empty Values section.

14.3.19 yii\validators\SafeValidator

[

// marks "description" to be a safe attribute

['description', 'safe'],

]

506 CHAPTER 14. SPECIAL TOPICS

This validator does not perform data validation. Instead, it is used to mark
an attribute to be a safe attribute.

14.3.20 yii\validators\StringValidator

[

// checks if "username" is a string whose length is between 4 and 24

['username', 'string', 'length' => [4, 24]],

]

This validator checks if the input value is a valid string with certain length.

• length: speci�es the length limit of the input string being validated.
This can be speci�ed in one of the following forms:
� an integer: the exact length that the string should be of;
� an array of one element: the minimum length of the input string
(e.g. [8]). This will overwrite min.

� an array of two elements: the minimum and maximum lengths of
the input string (e.g. [8, 128]). This will overwrite both min and
max.

• min: the minimum length of the input string. If not set, it means no
minimum length limit.

• max: the maximum length of the input string. If not set, it means no
maximum length limit.

• encoding: the encoding of the input string to be validated. If not set,
it will use the application's yii\base\Application::charset value
which defaults to UTF-8.

14.3.21 yii\validators\FilterValidator

[

// trims the white spaces surrounding "username" and "email"

[['username', 'email'], 'trim'],

]

This validator does not perform data validation. Instead, it will trim the
surrounding white spaces around the input value. Note that if the input
value is an array, it will be ignored by this validator.

14.3.22 yii\validators\UniqueValidator

[

// a1 needs to be unique in the column represented by the "a1" attribute

['a1', 'unique'],

// a1 needs to be unique, but column a2 will be used to check the

uniqueness of the a1 value

['a1', 'unique', 'targetAttribute' => 'a2'],

// a1 and a2 need to be unique together, and they both will receive

error message

14.3. CORE VALIDATORS 507

[['a1', 'a2'], 'unique', 'targetAttribute' => ['a1', 'a2']],

// a1 and a2 need to be unique together, only a1 will receive error

message

['a1', 'unique', 'targetAttribute' => ['a1', 'a2']],

// a1 needs to be unique by checking the uniqueness of both a2 and a3 (

using a1 value)

['a1', 'unique', 'targetAttribute' => ['a2', 'a1' => 'a3']],

]

This validator checks if the input value is unique in a table column. It only
works with Active Record model attributes. It supports validation against
either a single column or multiple columns.

• targetClass: the name of the Active Record class that should be used
to look for the input value being validated. If not set, the class of the
model currently being validated will be used.

• targetAttribute: the name of the attribute in targetClass that should
be used to validate the uniqueness of the input value. If not set, it will
use the name of the attribute currently being validated. You may use
an array to validate the uniqueness of multiple columns at the same
time. The array values are the attributes that will be used to validate
the uniqueness, while the array keys are the attributes whose values
are to be validated. If the key and the value are the same, you can just
specify the value.

• filter: additional �lter to be applied to the DB query used to check
the uniqueness of the input value. This can be a string or an array
representing the additional query condition (refer to yii\db\Query::

where() on the format of query condition), or an anonymous function
with the signature function ($query), where $query is the yii\db\Query
object that you can modify in the function.

14.3.23 yii\validators\UrlValidator

[

// checks if "website" is a valid URL. Prepend "http://" to the "website

" attribute

// if it does not have a URI scheme

['website', 'url', 'defaultScheme' => 'http'],

]

This validator checks if the input value is a valid URL.
• validSchemes: an array specifying the URI schemes that should be con-
sidered valid. Defaults to ['http', 'https'], meaning both http and
https URLs are considered to be valid.

• defaultScheme: the default URI scheme to be prepended to the input
if it does not have the scheme part. Defaults to null, meaning do not
modify the input value.

508 CHAPTER 14. SPECIAL TOPICS

• enableIDN: whether the validator should take into account IDN (inter-
nationalized domain names). Defaults to false. Note that in order
to use IDN validation you have to install and enable the intl PHP
extension, otherwise an exception would be thrown.

14.4 Internationalization

Internationalization (I18N) refers to the process of designing a software ap-
plication so that it can be adapted to various languages and regions without
engineering changes. For Web applications, this is of particular importance
because the potential users may be worldwide. Yii o�ers a full spectrum of
I18N features that support message translation, view translation, date and
number formatting.

14.4.1 Locale and Language

Locale

Locale is a set of parameters that de�nes the user's language, country and any
special variant preferences that the user wants to see in their user interface.
It is usually identi�ed by an ID consisting of a language ID and a region ID.

For example, the ID en-US stands for the locale of �English and the United
States�.

For consistency reasons, all locale IDs used in Yii applications should
be canonicalized to the format of ll-CC, where ll is a two- or three-letter
lowercase language code according to ISO-63912 and CC is a two-letter country
code according to ISO-316613. More details about locale can be found in the
documentation of the ICU project14.

Language

In Yii, we often use the term �language� to refer to a locale.

A Yii application uses two kinds of languages:

• yii\base\Application::$sourceLanguage: This refers to the lan-
guage in which the text messages in the source code are written.

• yii\base\Application::$language: This is the language that should
be used to display content to end users.

The so-called message translation service mainly translates a text message
from source language to target language.

12http://www.loc.gov/standards/iso639-2/
13http://www.iso.org/iso/en/prods-services/iso3166ma/

02iso-3166-code-lists/list-en1.html
14http://userguide.icu-project.org/locale#TOC-The-Locale-Concept

http://www.loc.gov/standards/iso639-2/
http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://userguide.icu-project.org/locale#TOC-The-Locale-Concept

14.4. INTERNATIONALIZATION 509

Con�guration

You can con�gure application languages in the �application con�guration�
like the following:

return [

// set target language to be Russian

'language' => 'ru-RU',

// set source language to be English

'sourceLanguage' => 'en-US',

......

];

The default value for the yii\base\Application::$sourceLanguage is en

-US, meaning US English. It is recommended that you keep this default
value unchanged. Usually it is much easier to �nd people who can translate
from �English to other languages� than from �non-English to non-English�.

You often need to set the yii\base\Application::$language dynamic-
ally based on di�erent factors, such as the language preference of end users.
Instead of con�guring it in the application con�guration, you can use the
following statement to change the target language:

// change target language to Chinese

\Yii::$app->language = 'zh-CN';

Tip: If your source language varies among di�erent parts of your
code, you can override the source language for di�erent message
sources, which are described in the next section.

14.4.2 Message Translation

From source language to target language

The message translation service translates a text message from one language
(usually the yii\base\Application::$sourceLanguage) to another (usu-
ally the yii\base\Application::$language).

It does the translation by looking up the message to be translated in a
message source which stores the original messages and the translated mes-
sages. If the message is found, the corresponding translated message will be
returned; otherwise the original message will be returned untranslated.

How to implement

To use the message translation service, you mainly need to do the following
work:

1. Wrap every text message that needs to be translated in a call to the
Yii::t() method.

510 CHAPTER 14. SPECIAL TOPICS

2. Con�gure one or multiple message sources in which the message trans-
lation service can look for translated messages.

3. Let the translators translate messages and store them in the message
source(s).

1. Wrap a text message The method Yii::t() can be used like the
following,

echo \Yii::t('app', 'This is a string to translate!');

where the second parameter refers to the text message to be translated,
while the �rst parameter refers to the name of the category which is used to
categorize the message.

2. Con�gure one or multiple message sources The Yii::t() method
will call the i18n application component translate method to perform the
actual translation work. The component can be con�gured in the application
con�guration as follows,

'components' => [

// ...

'i18n' => [

'translations' => [

'app*' => [

'class' => 'yii\i18n\PhpMessageSource',

//'basePath' => '@app/messages',

//'sourceLanguage' => 'en-US',

'fileMap' => [

'app' => 'app.php',

'app/error' => 'error.php',

],

],

],

],

],

In the above code, a message source supported by yii\i18n\PhpMessageSource
is being con�gured.

Category wildcards with * symbol The pattern app* indicates that all
message categories whose names start with app should be translated using
this message source.

3. Let the translators translate messages and store them in the
message source(s) The yii\i18n\PhpMessageSource class uses PHP �les
with a simple PHP array to store message translations. These �les contain
a map of the messages in source language to the translation in the target

language.

14.4. INTERNATIONALIZATION 511

Info: You can automatically generate these PHP �les by us-
ing the message command, which will be introduced later in this
chapter.

Each PHP �le corresponds to the messages of a single category. By default,
the �le name should be the same as the category name. Example for app/

messages/nl-NL/main.php:

<?php

/**

* Translation map for nl-NL

*/

return [

'welcome' => 'welkom'

];

File mapping You may con�gure yii\i18n\PhpMessageSource::fileMap
to map a category to a PHP �le with a di�erent naming approach.

In the above example, the category app/error is mapped to the PHP
�le @app/messages/ru-RU/error.php (assuming ru-RU is the target language).
However, without this con�guration the category would be mapped to @app

/messages/ru-RU/app/error.php instead.

Other storage types Besides storing the messages in PHP �les, you may
also use the following message sources to store translated messages in di�er-
ent storage:

• yii\i18n\GettextMessageSource uses GNU Gettext MO or PO �les
to maintain translated messages.

• yii\i18n\DbMessageSource uses a database table to store translated
messages.

14.4.3 Message Formatting

When translating a message, you can embed some placeholders and have
them replaced by dynamic parameter values. You can even use special place-
holder syntax to have the parameter values formatted according to the target
language. In this subsection, we will describe di�erent ways of formatting
messages.

Message Parameters

In a message to be translated, you can embed one or multiple parameters
(also called placeholders) so that they can be replaced by the given values.
By giving di�erent sets of values, you can variate the translated message
dynamically. In the following example, the placeholder {username} in the

512 CHAPTER 14. SPECIAL TOPICS

message 'Hello, {username}!' will be replaced by 'Alexander' and 'Qiang',
respectively.

$username = 'Alexander';

// display a translated message with username being "Alexander"

echo \Yii::t('app', 'Hello, {username}!', [

'username' => $username,

]);

$username = 'Qiang';

// display a translated message with username being "Qiang"

echo \Yii::t('app', 'Hello, {username}!', [

'username' => $username,

]);

While translating a message containing placeholders, you should leave the
placeholders as is. This is because the placeholders will be replaced with the
actual values when you call Yii::t() to translate a message.

You can use either named placeholders or positional placeholders, but not
both, in a single message.

The previous example shows how you can use named placeholders. That
is, each placeholder is written in the format of {name}, and you provide an
associative array whose keys are the placeholder names (without the curly
brackets) and whose values are the corresponding values placeholder to be
replaced with.

Positional placeholders use zero-based integer sequence as names which
are replaced by the provided values according to their positions in the call of
Yii::t(). In the following example, the positional placeholders {0}, {1} and
{2} will be replaced by the values of $price, $count and $subtotal, respectively.

$price = 100;

$count = 2;

$subtotal = 200;

echo \Yii::t('app', 'Price: {0}, Count: {1}, Subtotal: {2}', [$price, $count

, $subtotal]);

In case of a single positional parameter its value could be speci�ed without
wrapping it into array:

echo \Yii::t('app', 'Price: {0}', $price);

Tip: In most cases you should use named placeholders. This is
because the names will make the translators understand better
the whole messages being translated.

Parameter Formatting

You can specify additional formatting rules in the placeholders of a message
so that the parameter values can be formatted properly before they replace
the placeholders. In the following example, the price parameter value will
be treated as a number and formatted as a currency value:

14.4. INTERNATIONALIZATION 513

$price = 100;

echo \Yii::t('app', 'Price: {0,number,currency}', $price);

Note: Parameter formatting requires the installation of the intl
PHP extension15.

You can use either the short form or the full form to specify a placeholder
with formatting:

short form: {name,type}

full form: {name,type,style}

Note: If you need to use special characters such as {, }, ', #,
wrap them in ':

echo Yii::t('app', "Example of string with ''-escaped characters

'': '{' '}' '{test}' {count,plural,other{''count'' value is

'#{}'}}", ['count' => 3]);

Complete format is described in the ICU documentation16. In the following
we will show some common usages.

Number The parameter value is treated as a number. For example,

$sum = 42;

echo \Yii::t('app', 'Balance: {0,number}', $sum);

You can specify an optional parameter style as integer, currency, or percent:

$sum = 42;

echo \Yii::t('app', 'Balance: {0,number,currency}', $sum);

You can also specify a custom pattern to format the number. For example,

$sum = 42;

echo \Yii::t('app', 'Balance: {0,number,,000,000000}', $sum);

Characters used in the custom format could be found in ICU API reference17

under �Special Pattern Characters� section.

The value is always formatted according to the locale you are translating
to i.e. you cannot change decimal or thousands separators, currency symbol
etc. without changing translation locale. If you need to customize these
you can use yii\i18n\Formatter::asDecimal() and yii\i18n\Formatter

::asCurrency().

15http://www.php.net/manual/en/intro.intl.php
16http://icu-project.org/apiref/icu4c/classMessageFormat.html
17http://icu-project.org/apiref/icu4c/classicu_1_1DecimalFormat.html

http://www.php.net/manual/en/intro.intl.php
http://icu-project.org/apiref/icu4c/classMessageFormat.html
http://icu-project.org/apiref/icu4c/classicu_1_1DecimalFormat.html

514 CHAPTER 14. SPECIAL TOPICS

Date The parameter value should be formatted as a date. For example,

echo \Yii::t('app', 'Today is {0,date}', time());

You can specify an optional parameter style as short, medium, long, or full:

echo \Yii::t('app', 'Today is {0,date,short}', time());

You can also specify a custom pattern to format the date value:

echo \Yii::t('app', 'Today is {0,date,yyyy-MM-dd}', time());

Formatting reference18.

Time The parameter value should be formatted as a time. For example,

echo \Yii::t('app', 'It is {0,time}', time());

You can specify an optional parameter style as short, medium, long, or full:

echo \Yii::t('app', 'It is {0,time,short}', time());

You can also specify a custom pattern to format the time value:

echo \Yii::t('app', 'It is {0,date,HH:mm}', time());

Formatting reference19.

Spellout The parameter value should be treated as a number and format-
ted as a spellout. For example,

// may produce "42 is spelled as forty-two"

echo \Yii::t('app', '{n,number} is spelled as {n,spellout}', ['n' => 42]);

By default the number is spelled out as cardinal. It could be changed:

// may produce "I am forty-seventh agent"

echo \Yii::t('app', 'I am {n,spellout,%spellout-ordinal} agent', ['n' =>

47]);

Note that there should be no space after spellout, and before %.
To get a list of options available for locale you're using check �Numbering

schemas, Spellout� at http://intl.rmcreative.ru/20.

Ordinal The parameter value should be treated as a number and format-
ted as an ordinal name. For example,

// may produce "You are the 42nd visitor here!"

echo \Yii::t('app', 'You are the {n,ordinal} visitor here!', ['n' => 42]);

Ordinal supports more ways of formatting for languages such as Spanish:

// may produce a471

echo \Yii::t('app', '{n,ordinal,%digits-ordinal-feminine}', ['n' => 471]);

18http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html
19http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html
20http://intl.rmcreative.ru/

http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html
http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html
http://intl.rmcreative.ru/

14.4. INTERNATIONALIZATION 515

Note that there should be no space after ordinal, and before %.

To get a list of options available for locale you're using check �Numbering
schemas, Ordinal� at http://intl.rmcreative.ru/21.

Duration The parameter value should be treated as the number of seconds
and formatted as a time duration string. For example,

// may produce "You are here for 47 sec. already!"

echo \Yii::t('app', 'You are here for {n,duration} already!', ['n' => 47]);

Duration supports more ways of formatting:

// may produce 130:53:47

echo \Yii::t('app', '{n,duration,%in-numerals}', ['n' => 471227]);

Note that there should be no space after duration, and before %.

To get a list of options available for locale you're using check �Numbering
schemas, Duration� at http://intl.rmcreative.ru/22.

Plural Di�erent languages have di�erent ways to in�ect plurals. Yii
provides a convenient way for translating messages in di�erent plural forms
that works well even for very complex rules. Instead of dealing with the
in�ection rules directly, it is su�cient to provide the translation of in�ected
words in certain situations only. For example,

// When $n = 0, it may produce "There are no cats!"

// When $n = 1, it may produce "There is one cat!"

// When $n = 42, it may produce "There are 42 cats!"

echo \Yii::t('app', 'There {n,plural,=0{are no cats} =1{is one cat} other{

are # cats}}!', ['n' => $n]);

In the plural rule arguments above, = means explicit value. So =0 means
exactly zero, =1 means exactly one. other stands for any other value. # is
replaced with the value of n formatted according to target language.

Plural forms can be very complicated in some languages. In the following
Russian example, =1 matches exactly n = 1 while one matches 21 or 101:

Çäåñü

{n,pluralêîòîâ,=0{ íåò} åñòü=1{ îäèí êîò} one{# êîò} few{# êîòà} many{#

êîòîâ} other{# êîòà}}!

These other, few, many and other special argument names vary depending
on language. To learn which ones you should specify for a particular loc-
ale, please refer to �Plural Rules, Cardinal� at http://intl.rmcreative.ru/23.
Alternatively you can refer to rules reference at unicode.org24.

21http://intl.rmcreative.ru/
22http://intl.rmcreative.ru/
23http://intl.rmcreative.ru/
24http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/language_

plural_rules.html

http://intl.rmcreative.ru/
http://intl.rmcreative.ru/
http://intl.rmcreative.ru/
http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/language_plural_rules.html
http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/language_plural_rules.html

516 CHAPTER 14. SPECIAL TOPICS

Note: The above example Russian message is mainly used as a
translated message, not an original message, unless you set the
yii\base\Application::$sourceLanguage of your application
as ru-RU and translating from Russian.

When a translation is not found for an original message speci�ed
in Yii::t() call, the plural rules for the yii\base\Application

::$sourceLanguage will be applied to the original message.

There's an offset parameter for the cases when the string is like the following:

$likeCount = 2;

echo Yii::t('app', 'You {likeCount,plural,

offset: 1

=0{did not like this}

=1{liked this}

one{and one other person liked this}

other{and # others liked this}

}', [

'likeCount' => $likeCount

]);

// You and one other person liked this

Ordinal selection The parameter type
of selectordinal is meant to choose a string based on language rules for or-
dinals for the locale you are translating to:

$n = 3;

echo Yii::t('app', 'You are the {n,selectordinal,one{#st} two{#nd} few{#rd}

other{#th}} visitor', ['n' => $n]);

// For English it outputs:

// You are the 3rd visitor

// Translation

'You are the {n,selectordinal,one{#st} two{#nd} few{#rd} other{#th}} visitor

' => 'Âû {n,selectordinal,other{#-é}} ïîñåòèòåëü',

// For Russian translation it outputs:

// Âû 3-é ïîñåòèòåëü

The format is very close to what's used for plurals. To learn which argu-
ments you should specify for a particular locale, please refer to �Plural Rules,
Ordinal� at http://intl.rmcreative.ru/25. Alternatively you can refer to rules
reference at unicode.org26.

25http://intl.rmcreative.ru/
26http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/language_

plural_rules.html

http://intl.rmcreative.ru/
http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/language_plural_rules.html
http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/language_plural_rules.html

14.4. INTERNATIONALIZATION 517

Selection You can use the select parameter type to choose a phrase based
on the parameter value. For example,

// It may produce "Snoopy is a dog and it loves Yii!"

echo \Yii::t('app', '{name} is a {gender} and {gender,select,female{she}

male{he} other{it}} loves Yii!', [

'name' => 'Snoopy',

'gender' => 'dog',

]);

In the expression above, both female and male are possible parameter values,
while other handles values that do not match either one of them. Following
each possible parameter value, you should specify a phrase and enclose it in
a pair of curly brackets.

Specifying default message source

You can specify default message source that will be used as a fallback for
category that doesn't match any con�gured category. You can do that by
con�guring a wildcard category *. In order to do that, add the following to
the application con�g:

//configure i18n component

'i18n' => [

'translations' => [

'*' => [

'class' => 'yii\i18n\PhpMessageSource'

],

],

],

Now you can use categories without con�guring each one, which is similar to
Yii 1.1 behavior. Messages for the category will be loaded from a �le under
the default translation basePath that is @app/messages:

echo Yii::t('not_specified_category', 'message from unspecified category');

The message will be loaded from @app/messages/<LanguageCode>/not_specified_category

.php.

Translating module messages

If you want to translate the messages for a module and avoid using a single
translation �le for all the messages, you can do it like the following:

<?php

namespace app\modules\users;

use Yii;

class Module extends \yii\base\Module

518 CHAPTER 14. SPECIAL TOPICS

{

public $controllerNamespace = 'app\modules\users\controllers';

public function init()

{

parent::init();

$this->registerTranslations();

}

public function registerTranslations()

{

Yii::$app->i18n->translations['modules/users/*'] = [

'class' => 'yii\i18n\PhpMessageSource',

'sourceLanguage' => 'en-US',

'basePath' => '@app/modules/users/messages',

'fileMap' => [

'modules/users/validation' => 'validation.php',

'modules/users/form' => 'form.php',

...

],

];

}

public static function t($category, $message, $params = [], $language =

null)

{

return Yii::t('modules/users/' . $category, $message, $params,

$language);

}

}

In the example above we are using wildcard for matching and then �ltering
each category per needed �le. Instead of using fileMap, you can simply use
the convention of the category mapping to the same named �le. Now you
can use Module::t('validation', 'your custom validation message') or Module::
t('form', 'some form label') directly.

Translating widgets messages

The same rule as applied for Modules above can be applied for widgets too,
for example:

<?php

namespace app\widgets\menu;

use yii\base\Widget;

use Yii;

class Menu extends Widget

{

14.4. INTERNATIONALIZATION 519

public function init()

{

parent::init();

$this->registerTranslations();

}

public function registerTranslations()

{

$i18n = Yii::$app->i18n;

$i18n->translations['widgets/menu/*'] = [

'class' => 'yii\i18n\PhpMessageSource',

'sourceLanguage' => 'en-US',

'basePath' => '@app/widgets/menu/messages',

'fileMap' => [

'widgets/menu/messages' => 'messages.php',

],

];

}

public function run()

{

echo $this->render('index');

}

public static function t($category, $message, $params = [], $language =

null)

{

return Yii::t('widgets/menu/' . $category, $message, $params,

$language);

}

}

Instead of using fileMap you can simply use the convention of the category
mapping to the same named �le. Now you can use Menu::t('messages', 'new

messages {messages}', ['{messages}' => 10]) directly.

Note: For widgets you also can use i18n views, with the same
rules as for controllers being applied to them too.

Translating framework messages

Yii comes with the default translation messages for validation errors and
some other strings. These messages are all in the category yii. Sometimes
you want to correct the default framework message translation for your ap-
plication. In order to do so, con�gure the i18n application component like
the following:

'i18n' => [

'translations' => [

'yii' => [

'class' => 'yii\i18n\PhpMessageSource',

520 CHAPTER 14. SPECIAL TOPICS

'sourceLanguage' => 'en-US',

'basePath' => '@app/messages'

],

],

],

Now you can place your adjusted translations to @app/messages/<language>/

yii.php.

Handling missing translations

Even if the translation is missing from the source, Yii will display the re-
quested message content. Such behavior is very convenient in case your raw
message is a valid verbose text. However, sometimes it is not enough. You
may need to perform some custom processing of the situation, when the re-
quested translation is missing from the source. This can be achieved using
the yii\i18n\MessageSource::EVENT_MISSING_TRANSLATION-event of yii
\i18n\MessageSource.

For example, you may want to mark all the missing translations with
something notable, so that they can be easily found at the page. First
you need to setup an event handler. This can be done in the application
con�guration:

'components' => [

// ...

'i18n' => [

'translations' => [

'app*' => [

'class' => 'yii\i18n\PhpMessageSource',

'fileMap' => [

'app' => 'app.php',

'app/error' => 'error.php',

],

'on missingTranslation' => ['app\components\

TranslationEventHandler', 'handleMissingTranslation']

],

],

],

],

Now you need to implement your own event handler:

<?php

namespace app\components;

use yii\i18n\MissingTranslationEvent;

class TranslationEventHandler

{

public static function handleMissingTranslation(MissingTranslationEvent

$event)

14.4. INTERNATIONALIZATION 521

{

$event->translatedMessage = "@MISSING: {$event->category}.{$event->

message} FOR LANGUAGE {$event->language} @";

}

}

If yii\i18n\MissingTranslationEvent::translatedMessage is set by the
event handler it will be displayed as the translation result.

Note: each message source handles its missing translations sep-
arately. If you are using several message sources and wish them
to treat the missing translations in the same way, you should
assign the corresponding event handler to each of them.

Using the message command

Translations can be stored in yii\i18n\PhpMessageSource, yii\i18n\GettextMessageSource
or in a yii\i18n\DbMessageSource. See speci�c classes for additional op-
tions.

First of all you need to create a con�guration �le. Decide where you want
to store it and then issue the command

./yii message/config-template path/to/config.php

Open the created �le and adjust the parameters to �t your needs. Pay special
attention to:

• languages: an array representing what languages your app should be
translated to;

• messagePath: path where to store message �les, which should match the
i18n`s basePath parameter stated in con�g.

You may also use `./yii message/con�g' command to dynamically generate
con�guration �le with speci�ed options via cli. For example, you can set
languages and messagePath parameters like the following:

./yii message/config --languages=de,ja --messagePath=messages path/to/config

.php

To get list of available options execute next command:

./yii help message/config

Once you're done with the con�guration �le you can �nally extract your
messages with the command:

./yii message path/to/config.php

Also, you may use options to dynamically change parameters for extraction.

You will then �nd your �les (if you've chosen �le based translations) in
your messagePath directory.

522 CHAPTER 14. SPECIAL TOPICS

14.4.4 View Translation

Instead of translating individual text messages, sometimes you may want to
translate a whole view script. To achieve this goal, simply translate the view
and save it under a subdirectory whose name is the same as target language.
For example, if you want to translate the view script views/site/index.php

and the target language is ru-RU, you may translate the view and save it as
the �le views/site/ru-RU/index.php. Now whenever you call yii\base\View
::renderFile() or any method that invoke this method (e.g. yii\base

\Controller::render()) to render the view views/site/index.php, it will end
up rendering the translated view views/site/ru-RU/index.php, instead.

Note: If the yii\base\Application::$language is the same as
yii\base\Application::$sourceLanguage original view will be
rendered regardless of presence of translated view.

14.4.5 Formatting Date and Number Values

See the Data Formatting section for details.

14.4.6 Setting Up PHP Environment

Yii uses the PHP intl extension27 to provide most of its I18N features, such
as the date and number formatting of the yii\i18n\Formatter class and
the message formatting using yii\i18n\MessageFormatter. Both classes
provide a fallback mechanism when the intl extension is not installed. How-
ever, the fallback implementation only works well for English target lan-
guage. So it is highly recommended that you install intl when I18N is
needed.

The PHP intl extension28 is based on the ICU library29 which provides
the knowledge and formatting rules for all di�erent locales. Di�erent versions
of ICU may produce di�erent formatting result of date and number values.
To ensure your website produces the same results across all environments, it
is recommended that you install the same version of the intl extension (and
thus the same version of ICU) in all environments.

To �nd out which version of ICU is used by PHP, you can run the fol-
lowing script, which will give you the PHP and ICU version being used.

<?php

echo "PHP: " . PHP_VERSION . "\n";

echo "ICU: " . INTL_ICU_VERSION . "\n";

echo "ICU Data: " . INTL_ICU_DATA_VERSION . "\n";

27http://php.net/manual/en/book.intl.php
28http://php.net/manual/en/book.intl.php
29http://site.icu-project.org/

http://php.net/manual/en/book.intl.php
http://php.net/manual/en/book.intl.php
http://site.icu-project.org/

14.5. MAILING 523

It is also recommended that you use an ICU version equal or greater than
version 49. This will ensure you can use all the features described in this
document. For example, an ICU version below 49 does not support using
placeholders in plural rules. Please refer to http://site.icu-project.

org/download for a complete list of available ICU versions. Note that the
version numbering has changed after the 4.8 release (e.g., ICU 4.8, ICU 49,
ICU 50, etc.)

Additionally the information in the time zone database shipped with the
ICU library may be outdated. Please refer to the ICU manual30 for details
on updating the time zone database. While for output formatting the ICU
timezone database is used, the time zone database used by PHP may be
relevant too. You can update it by installing the latest version of the pecl
package timezonedb31.

14.5 Mailing

Note: This section is under development.

Yii supports composition and sending of the email messages. However, the
framework core provides only the content composition functionality and basic
interface. Actual mail sending mechanism should be provided by the exten-
sion, because di�erent projects may require its di�erent implementation and
it usually depends on the external services and libraries.

For the most common cases you can use yii2-swiftmailer32 o�cial exten-
sion.

14.5.1 Con�guration

Mail component con�guration depends on the extension you have chosen. In
general your application con�guration should look like:

return [

//....

'components' => [

'mailer' => [

'class' => 'yii\swiftmailer\Mailer',

],

],

];

30http://userguide.icu-project.org/datetime/timezone#

TOC-Updating-the-Time-Zone-Data
31http://pecl.php.net/package/timezonedb
32https://github.com/yiisoft/yii2-swiftmailer

http://site.icu-project.org/download
http://site.icu-project.org/download
http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data
http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data
http://pecl.php.net/package/timezonedb
https://github.com/yiisoft/yii2-swiftmailer

524 CHAPTER 14. SPECIAL TOPICS

14.5.2 Basic usage

Once the mailer component is con�gured, you can use the following code to
send an email message:

Yii::$app->mailer->compose()

->setFrom('from@domain.com')

->setTo('to@domain.com')

->setSubject('Message subject')

->setTextBody('Plain text content')

->setHtmlBody('HTML content')

->send();

In the above example the method compose() creates an instance of the mail
message, which then is populated and sent. You may put more complex logic
in this process if needed:

$message = Yii::$app->mailer->compose();

if (Yii::$app->user->isGuest) {

$message->setFrom('from@domain.com');

} else {

$message->setFrom(Yii::$app->user->identity->email);

}

$message->setTo(Yii::$app->params['adminEmail'])

->setSubject('Message subject')

->setTextBody('Plain text content')

->send();

Note: each mailer extension comes in 2 major classes: Mailer

and Message. Mailer always knows the class name and speci�c of
the Message. Do not attempt to instantiate Message object directly
� always use compose() method for it.

You may also send several messages at once:

$messages = [];

foreach ($users as $user) {

$messages[] = Yii::$app->mailer->compose()

// ...

->setTo($user->email);

}

Yii::$app->mailer->sendMultiple($messages);

Some particular mail extensions may bene�t from this approach, using single
network message etc.

14.5.3 Composing mail content

Yii allows composition of the actual mail messages content via special view
�les. By default these �les should be located at @app/mail path.

Example mail view �le content:

14.5. MAILING 525

<?php

use yii\helpers\Html;

use yii\helpers\Url;

/* @var $this \yii\web\View view component instance */

/* @var $message \yii\mail\BaseMessage instance of newly created mail

message */

?>

<h2>This message allows you to visit our site home page by one click</h2>

<?= Html::a('Go to home page', Url::home('http')) ?>

In order to compose message content via view �le simply pass view name to
the compose() method:

Yii::$app->mailer->compose('home-link') // a view rendering result becomes

the message body here

->setFrom('from@domain.com')

->setTo('to@domain.com')

->setSubject('Message subject')

->send();

You may pass additional view parameters to compose() method, which will
be available inside the view �les:

Yii::$app->mailer->compose('greetings', [

'user' => Yii::$app->user->identity,

'advertisement' => $adContent,

]);

You can specify di�erent view �les for HTML and plain text message con-
tents:

Yii::$app->mailer->compose([

'html' => 'contact-html',

'text' => 'contact-text',

]);

If you specify view name as a scalar string, its rendering result will be used
as HTML body, while plain text body will be composed by removing all
HTML entities from HTML one.

View rendering result can be wrapped into the layout, which can be setup
using yii\mail\BaseMailer::htmlLayout and yii\mail\BaseMailer::textLayout.
It will work the same way like layouts in regular web application. Layout
can be used to setup mail CSS styles or other shared content:

<?php

use yii\helpers\Html;

/* @var $this \yii\web\View view component instance */

/* @var $message \yii\mail\MessageInterface the message being composed */

/* @var $content string main view render result */

?>

<?php $this->beginPage() ?>

526 CHAPTER 14. SPECIAL TOPICS

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/

TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=<?= Yii::

$app->charset ?>" />

<style type="text/css">

.heading {...}

.list {...}

.footer {...}

</style>

<?php $this->head() ?>

</head>

<body>

<?php $this->beginBody() ?>

<?= $content ?>

<div class="footer">With kind regards, <?= Yii::$app->name ?> team</div>

<?php $this->endBody() ?>

</body>

</html>

<?php $this->endPage() ?>

14.5.4 File attachment

You can add attachments to message using methods attach() and attachContent

():

$message = Yii::$app->mailer->compose();

// attach file from local file system

$message->attach('/path/to/source/file.pdf');

// create attachment on-the-fly

$message->attachContent('Attachment content', ['fileName' => 'attach.txt', '

contentType' => 'text/plain']);

14.5.5 Embedding images

You can embed images into the message content using embed() method. This
method returns the attachment id, which should be then used at img tag.
This method is easy to use when composing message content via view �le:

Yii::$app->mailer->compose('embed-email', ['imageFileName' => '/path/to/

image.jpg'])

// ...

->send();

Then inside the view �le you can use the following code:

<img src="<?= $message->embed($imageFileName); ?>">

14.6. PERFORMANCE TUNING 527

14.5.6 Testing and debugging

A developer often has to check, what actual emails are sent by the applic-
ation, what was their content and so on. Such ability is granted by Yii via
yii\mail\BaseMailer::useFileTransport. If enabled, this option enforces saving
mail message data into the local �les instead of regular sending. These �les
will be saved under yii\mail\BaseMailer::fileTransportPath, which is @runtime

/mail by default.

Note: you can either save the messages to the �les or send them
to the actual recipients, but can not do both simultaneously.

A mail message �le can be opened by a regular text �le editor, so you can
browse the actual message headers, content and so on. This mechanism may
prove itself, while debugging application or running unit test.

Note: the mail message �le content is composed via \yii\mail

\MessageInterface::toString(), so it depends on the actual mail
extension you are using in your application.

14.5.7 Creating your own mail solution

In order to create your own custom mail solution, you need to create 2
classes: one for the Mailer and another one for the Message. You can use yii\

mail\BaseMailer and yii\mail\BaseMessage as the base classes for your solution.
These classes already contain the basic logic, which is described in this guide.
However, their usage is not mandatory, it is enough to implement yii\mail

\MailerInterface and yii\mail\MessageInterface interfaces. Then you need to
implement all the abstract methods to build your solution.

14.6 Performance Tuning

There are many factors a�ecting the performance of your Web application.
Some are environmental, some are related with your code, while some others
are related with Yii itself. In this section, we will enumerate most of these
factors and explain how you can improve your application performance by
adjusting these factors.

14.6.1 Optimizing your PHP Environment

A well con�gured PHP environment is very important. In order to get max-
imum performance,

• Use the latest stable PHP version. Major releases of PHP may bring
signi�cant performance improvements.

528 CHAPTER 14. SPECIAL TOPICS

• Enable bytecode caching with Opcache33 (PHP 5.5 or later) or APC34

(PHP 5.4). Bytecode caching avoids the time spent in parsing and
including PHP scripts for every incoming request.

• Tune realpath() cache35.

14.6.2 Disabling Debug Mode

When running an application in production, you should disable debug mode.
Yii uses the value of a constant named YII_DEBUG to indicate whether debug
mode should be enabled. When debug mode is enabled, Yii will take extra
time to generate and record debugging information.

You may place the following line of code at the beginning of the entry
script to disable debug mode:

defined('YII_DEBUG') or define('YII_DEBUG', false);

Info: The default value of YII_DEBUG is false. So if you are certain
that you do not change its default value somewhere else in your
application code, you may simply remove the above line to disable
debug mode.

14.6.3 Using Caching Techniques

You can use various caching techniques to signi�cantly improve the per-
formance of your application. For example, if your application allows users
to enter text in Markdown format, you may consider caching the parsed
Markdown content to avoid parsing the same Markdown text repeatedly in
every request. Please refer to the Caching section to learn about the caching
support provided by Yii.

14.6.4 Enabling Schema Caching

Schema caching is a special caching feature that should be enabled whenever
you are using Active Record. As you know, Active Record is intelligent
enough to detect schema information (e.g. column names, column types,
constraints) about a DB table without requiring you to manually describe
them. Active Record obtains this information by executing extra SQL quer-
ies. By enabling schema caching, the retrieved schema information will be
saved in the cache and reused in future requests.

To enable schema caching, con�gure a cache application component to
store the schema information and set yii\db\Connection::enableSchemaCache
to be true in the application con�guration:

33http://php.net/opcache
34http://php.net/apc
35https://github.com/samdark/realpath_cache_tuner

http://php.net/opcache
http://php.net/apc
https://github.com/samdark/realpath_cache_tuner

14.6. PERFORMANCE TUNING 529

return [

// ...

'components' => [

// ...

'cache' => [

'class' => 'yii\caching\FileCache',

],

'db' => [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=localhost;dbname=mydatabase',

'username' => 'root',

'password' => '',

'enableSchemaCache' => true,

// Duration of schema cache.

'schemaCacheDuration' => 3600,

// Name of the cache component used to store schema information

'schemaCache' => 'cache',

],

],

];

14.6.5 Combining and Minimizing Assets

A complex Web page often includes many CSS and/or JavaScript asset �les.
To reduce the number of HTTP requests and the overall download size of
these assets, you should consider combining them into one single �le and
compressing it. This may greatly improve the page loading time and reduce
the server load. For more details, please refer to the Assets section.

14.6.6 Optimizing Session Storage

By default session data are stored in �les. The implementation is locking a
�le from opening a session to the point it's closed either by session_write_close

() (in Yii it could be done as Yii::$app->session->close()) or at the end of
request. While session �le is locked all other requests which are trying to
use the same session are blocked i.e. waiting for the initial request to release
session �le. This is �ne for development and probably small projects. But
when it comes to handling massive concurrent requests, it is better to use
more sophisticated storage, such as database. Yii supports a variety of ses-
sion storage out of box. You can use these storage by con�guring the session

component in the application con�guration like the following,

return [

// ...

'components' => [

'session' => [

'class' => 'yii\web\DbSession',

530 CHAPTER 14. SPECIAL TOPICS

// Set the following if you want to use DB component other than

// default 'db'.

// 'db' => 'mydb',

// To override default session table, set the following

// 'sessionTable' => 'my_session',

],

],

];

The above con�guration uses a database table to store session data. By
default, it will use the db application component as the database connection
and store the session data in the session table. You do have to create the
session table as follows in advance, though,

CREATE TABLE session (

id CHAR(40) NOT NULL PRIMARY KEY,

expire INTEGER,

data BLOB

)

You may also store session data in a cache by using yii\web\CacheSession.
In theory, you can use any supported cache storage. Note, however, that
some cache storage may �ush cached data when the storage limit is reached.
For this reason, you should mainly use those cache storage that do not enforce
storage limit.

If you have Redis36 on your server, it is highly recommended you use it
as session storage by using yii\redis\Session.

14.6.7 Optimizing Databases

Executing DB queries and fetching data from databases are often the main
performance bottleneck in a Web application. Although using data cach-
ing techniques may alleviate the performance hit, it does not fully solve
the problem. When the database contains enormous amounts of data and
the cached data is invalid, fetching the latest data could be prohibitively
expensive without proper database and query design.

A general technique to improve the performance of DB queries is to create
indices for table columns that need to be �ltered by. For example, if you
need to look for a user record by username, you should create an index on
username. Note that while indexing can make SELECT queries much faster,
it will slow down INSERT, UPDATE and DELETE queries.

For complex DB queries, it is recommended that you create database
views to save the query parsing and preparation time.

Last but not least, use LIMIT in your SELECT queries. This avoids fetch-
ing an overwhelming amount of data from the database and exhausting the
memory allocated to PHP.

36http://redis.io/

http://redis.io/

14.6. PERFORMANCE TUNING 531

14.6.8 Using Plain Arrays

Although Active Record is very convenient to use, it is not as e�cient as
using plain arrays when you need to retrieve a large amount of data from
database. In this case, you may consider calling asArray() while using Active
Record to query data so that the retrieved data is represented as arrays
instead of bulky Active Record objects. For example,

class PostController extends Controller

{

public function actionIndex()

{

$posts = Post::find()->limit(100)->asArray()->all();

return $this->render('index', ['posts' => $posts]);

}

}

In the above code, $posts will be populated as an array of table rows. Each
row is a plain array. To access the title column of the i-th row, you may
use the expression $posts[$i]['title'].

You may also use DAO to build queries and retrieve data in plain arrays.

14.6.9 Optimizing Composer Autoloader

Because Composer autoloader is used to include most third-party class �les,
you should consider optimizing it by executing the following command:

composer dumpautoload -o

14.6.10 Processing Data O�ine

When a request involves some resource intensive operations, you should think
of ways to perform those operations in o�ine mode without having users wait
for them to �nish.

There are two methods to process data o�ine: pull and push.

In the pull method, whenever a request involves some complex operation,
you create a task and save it in a persistent storage, such as database. You
then use a separate process (such as a cron job) to pull the tasks and process
them. This method is easy to implement, but it has some drawbacks. For
example, the task process needs to periodically pull from the task storage.
If the pull frequency is too low, the tasks may be processed with great delay,
but if the frequency is too high, it will introduce high overhead.

In the push method, you would use a message queue (e.g. RabbitMQ,
ActiveMQ, Amazon SQS, etc.) to manage the tasks. Whenever a new task
is put on the queue, it will initiate or notify the task handling process to
trigger the task processing.

532 CHAPTER 14. SPECIAL TOPICS

14.6.11 Performance Pro�ling

You should pro�le your code to �nd out the performance bottlenecks and
take appropriate measures accordingly. The following pro�ling tools may be
useful:

• Yii debug toolbar and debugger37

• Black�re38

• XHProf39

• XDebug pro�ler40

14.6.12 Prepare application for scaling

When nothing helps you may try making your application scalabe. A good
introduction is provided in Con�guring a Yii 2 Application for an Autoscaling
Stack41. For further reading you may refer to Web apps performance and
scaling42.

14.7 Shared Hosting Environment

Shared hosting environments are often quite limited about con�guration and
directory structure. Still in most cases you can run Yii 2.0 on a shared hosting
environment with a few adjustments.

14.7.1 Deploying a basic project template

Since in a shared hosting environment there's typically only one webroot,
use the basic project template if you can. Refer to the Installing Yii chapter
and install the basic project template locally. After you have the application
working locally, we'll make some adjustments so it can be hosted on your
shared hosting server.

Renaming webroot

Connect to your shared host using FTP or by other means. You will probably
see something like the following.

config

logs

www

37https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md
38https://blackfire.io/
39http://www.php.net/manual/en/book.xhprof.php
40http://xdebug.org/docs/profiler
41https://github.com/samdark/yii2-cookbook/blob/master/book/scaling.md
42http://thehighload.com/

https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md
https://blackfire.io/
http://www.php.net/manual/en/book.xhprof.php
http://xdebug.org/docs/profiler
https://github.com/samdark/yii2-cookbook/blob/master/book/scaling.md
http://thehighload.com/

14.7. SHARED HOSTING ENVIRONMENT 533

In the above, www is your webserver webroot directory. It could be named
di�erently. Common names are: www, htdocs, and public_html.

The webroot in our basic project template is named web. Before uploading
the application to your webserver rename your local webroot to match your
server, i.e., from web to www, public_html or whatever the name of your hosting
webroot.

FTP root directory is writeable

If you can write to the root level directory i.e. where config, logs and www

are, then upload assets, commands etc. as is to the root level directory.

Add extras for webserver

If your webserver is Apache you'll need to add an .htaccess �le with the
following content to web (or public_html or whatever) (where the index.php

�le is located):

Options +FollowSymLinks

IndexIgnore */*

RewriteEngine on

if a directory or a file exists, use it directly

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

otherwise forward it to index.php

RewriteRule . index.php

In case of nginx you should not need any extra con�g �les.

Check requirements

In order to run Yii, your webserver must meet its requirements. The very
minimum requirement is PHP 5.4. In order to check the requirements copy
requirements.php from your root directory into the webroot directory and run
it via browser using http://example.com/requirements.php URL. Don't forget
to delete the �le afterwards.

14.7.2 Deploying an advanced project template

Deploying an advanced application to shared hosting is a bit trickier than a
basic application but it could be achieved. Follow instructions described in
advanced project template documentation43.

43https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/

topic-shared-hosting.md

https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/topic-shared-hosting.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/topic-shared-hosting.md

534 CHAPTER 14. SPECIAL TOPICS

14.8 Using template engines

By default, Yii uses PHP as its template language, but you can con�gure
Yii to support other rendering engines, such as Twig44 or Smarty45 available
as extensions.

The view component is responsible for rendering views. You can add a
custom template engine by recon�guring this component's behavior:

[

'components' => [

'view' => [

'class' => 'yii\web\View',

'renderers' => [

'tpl' => [

'class' => 'yii\smarty\ViewRenderer',

//'cachePath' => '@runtime/Smarty/cache',

],

'twig' => [

'class' => 'yii\twig\ViewRenderer',

'cachePath' => '@runtime/Twig/cache',

// Array of twig options:

'options' => [

'auto_reload' => true,

],

'globals' => ['html' => '\yii\helpers\Html'],

'uses' => ['yii\bootstrap'],

],

// ...

],

],

],

]

In the code above, both Smarty and Twig are con�gured to be useable by
the view �les. But in order to get these extensions into your project, you
need to also modify your composer.json �le to include them, too:

"yiisoft/yii2-smarty": "~2.0.0",

"yiisoft/yii2-twig": "~2.0.0",

That code would be added to the require section of composer.json. After
making that change and saving the �le, you can install the extensions by
running composer update --prefer-dist in the command-line.

For details about using concrete template engine please refer to its doc-
umentation:

• Twig guide46

• Smarty guide47

44http://twig.sensiolabs.org/
45http://www.smarty.net/
46https://github.com/yiisoft/yii2-twig/tree/master/docs/guide
47https://github.com/yiisoft/yii2-smarty/tree/master/docs/guide

http://twig.sensiolabs.org/
http://www.smarty.net/
https://github.com/yiisoft/yii2-twig/tree/master/docs/guide
https://github.com/yiisoft/yii2-smarty/tree/master/docs/guide

14.9. WORKING WITH THIRD-PARTY CODE 535

14.9 Working with Third-Party Code

From time to time, you may need to use some third-party code in your Yii
applications. Or you may want to use Yii as a library in some third-party
systems. In this section, we will show how to achieve these goals.

14.9.1 Using Third-Party Libraries in Yii

To use a third-party library in a Yii application, you mainly need to make
sure the classes in the library are properly included or can be autoloaded.

Using Composer Packages

Many third-party libraries are released in terms of Composer48 packages.
You can install such libraries by taking the following two simple steps:

1. modify the composer.json �le of your application and specify which
Composer packages you want to install.

2. run composer install to install the speci�ed packages.

The classes in the installed Composer packages can be autoloaded using
the Composer autoloader. Make sure the entry script of your application
contains the following lines to install the Composer autoloader:

// install Composer autoloader

require(__DIR__ . '/../vendor/autoload.php');

// include Yii class file

require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

Using Downloaded Libraries

If a library is not released as a Composer package, you should follow its
installation instructions to install it. In most cases, you will need to download
a release �le manually and unpack it in the BasePath/vendor directory, where
BasePath represents the base path of your application.

If a library carries its own class autoloader, you may install it in the
entry script of your application. It is recommended the installation is done
before you include the Yii.php �le so that the Yii class autoloader can take
precedence in autoloading classes.

If a library does not provide a class autoloader, but its class naming fol-
lows PSR-449, you may use the Yii class autoloader to autoload the classes.
All you need to do is just to declare a root alias for each root namespace used

48https://getcomposer.org/
49http://www.php-fig.org/psr/psr-4/

https://getcomposer.org/
http://www.php-fig.org/psr/psr-4/

536 CHAPTER 14. SPECIAL TOPICS

in its classes. For example, assume you have installed a library in the direct-
ory vendor/foo/bar, and the library classes are under the xyz root namespace.
You can include the following code in your application con�guration:

[

'aliases' => [

'@xyz' => '@vendor/foo/bar',

],

]

If neither of the above is the case, it is likely that the library relies on PHP
include path con�guration to correctly locate and include class �les. Simply
follow its instruction on how to con�gure the PHP include path.

In the worst case when the library requires explicitly including every class
�le, you can use the following method to include the classes on demand:

• Identify which classes the library contains.
• List the classes and the corresponding �le paths in Yii::$classMap in
the entry script of the application. For example,

Yii::$classMap['Class1'] = 'path/to/Class1.php';

Yii::$classMap['Class2'] = 'path/to/Class2.php';

14.9.2 Using Yii in Third-Party Systems

Because Yii provides many excellent features, sometimes you may want to
use some of its features to support developing or enhancing 3rd-party sys-
tems, such as WordPress, Joomla, or applications developed using other
PHP frameworks. For example, you may want to use the yii\helpers

\ArrayHelper class or use the Active Record feature in a third-party sys-
tem. To achieve this goal, you mainly need to take two steps: install Yii,
and bootstrap Yii.

If the third-party system uses Composer to manage its dependencies, you
can simply run the following commands to install Yii:

composer global require "fxp/composer-asset-plugin:^1.2.0"

composer require yiisoft/yii2

composer install

The �rst command installs the composer asset plugin50 which allows man-
aging bower and npm package dependencies through Composer. Even if you
only want to use the database layer or other non-asset related features of
Yii, this is required to install the Yii composer package.

If you want to use the Asset publishing feature of Yii you should also
add the following con�guration to the extra section in your composer.json:

{

...

"extra": {

50https://github.com/francoispluchino/composer-asset-plugin/

https://github.com/francoispluchino/composer-asset-plugin/

14.9. WORKING WITH THIRD-PARTY CODE 537

"asset-installer-paths": {

"npm-asset-library": "vendor/npm",

"bower-asset-library": "vendor/bower"

}

}

}

See also the general section about installing Yii for more information on
Composer and solution to possible issues popping up during the installation.

Otherwise, you can download51 the Yii release �le and unpack it in the
BasePath/vendor directory.

Next, you should modify the entry script of the 3rd-party system by
including the following code at the beginning:

require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

$yiiConfig = require(__DIR__ . '/../config/yii/web.php');

new yii\web\Application($yiiConfig); // Do NOT call run() here

As you can see, the code above is very similar to that in the entry script of
a typical Yii application. The only di�erence is that after the application
instance is created, the run() method is not called. This is because by calling
run(), Yii will take over the control of the request handling work�ow which
is not needed in this case and already handled by the existing application.

Like in a Yii application, you should con�gure the application instance
based on the environment running the third-party system. For example,
to use the Active Record feature, you need to con�gure the db application
component with the DB connection setting used by the third-party system.

Now you can use most features provided by Yii. For example, you can
create Active Record classes and use them to work with databases.

14.9.3 Using Yii 2 with Yii 1

If you were using Yii 1 previously, it is likely you have a running Yii 1
application. Instead of rewriting the whole application in Yii 2, you may
just want to enhance it using some of the features only available in Yii 2.
This can be achieved as described below.

Note: Yii 2 requires PHP 5.4 or above. You should make sure
that both your server and the existing application support this.

First, install Yii 2 in your existing application by following the instructions
given in the last subsection.

Second, modify the entry script of the application as follows,

// include the customized Yii class described below

require(__DIR__ . '/../components/Yii.php');

51http://www.yiiframework.com/download/

http://www.yiiframework.com/download/

538 CHAPTER 14. SPECIAL TOPICS

// configuration for Yii 2 application

$yii2Config = require(__DIR__ . '/../config/yii2/web.php');

new yii\web\Application($yii2Config); // Do NOT call run(), yii2 app is only

used as service locator

// configuration for Yii 1 application

$yii1Config = require(__DIR__ . '/../config/yii1/main.php');

Yii::createWebApplication($yii1Config)->run();

Because both Yii 1 and Yii 2 have the Yii class, you should create a custom-
ized version to combine them. The above code includes the customized Yii

class �le, which can be created as follows.

$yii2path = '/path/to/yii2';

require($yii2path . '/BaseYii.php'); // Yii 2.x

$yii1path = '/path/to/yii1';

require($yii1path . '/YiiBase.php'); // Yii 1.x

class Yii extends \yii\BaseYii

{

// copy-paste the code from YiiBase (1.x) here

}

Yii::$classMap = include($yii2path . '/classes.php');

// register Yii 2 autoloader via Yii 1

Yii::registerAutoloader(['yii\BaseYii', 'autoload']);

// create the dependency injection container

Yii::$container = new yii\di\Container;

That's all! Now in any part of your code, you can use Yii::$app to access the
Yii 2 application instance, while Yii::app() will give you the Yii 1 application
instance:

echo get_class(Yii::app()); // outputs 'CWebApplication'

echo get_class(Yii::$app); // outputs 'yii\web\Application'

Chapter 15

Widgets

539

540 CHAPTER 15. WIDGETS

Error: not existing �le: http://www.yiiframework.com/doc-
2.0/yii-grid-gridview.html

541

Error: not existing �le: http://www.yiiframework.com/doc-
2.0/yii-widgets-listview.html

542 CHAPTER 15. WIDGETS

Error: not existing �le: http://www.yiiframework.com/doc-
2.0/yii-widgets-detailview.html

543

Error: not existing �le: http://www.yiiframework.com/doc-
2.0/yii-widgets-pjax.html

544 CHAPTER 15. WIDGETS

Error: not existing �le: http://www.yiiframework.com/doc-
2.0/yii-widgets-menu.html

545

Error: not existing �le: http://www.yiiframework.com/doc-
2.0/yii-widgets-linkpager.html

546 CHAPTER 15. WIDGETS

Error: not existing �le: http://www.yiiframework.com/doc-
2.0/yii-widgets-linksorter.html

547

Error: not existing �le: https://github.com/yiisoft/yii2-bootstrap/blob/master/docs/guide/README.md

548 CHAPTER 15. WIDGETS

Error: not existing �le: https://github.com/yiisoft/yii2-jui/blob/master/docs/guide/README.md

Chapter 16

Helpers

16.1 Helpers

Note: This section is under development.

Yii provides many classes that help simplify common coding tasks, such as
string or array manipulations, HTML code generation, and so on. These
helper classes are organized under the yii\helpers namespace and are all
static classes (meaning they contain only static properties and methods and
should not be instantiated).

You use a helper class by directly calling one of its static methods, like
the following:

use yii\helpers\Html;

echo Html::encode('Test > test');

Note: To support customizing helper classes, Yii breaks each
core helper class into two classes: a base class (e.g. BaseArrayHelper

) and a concrete class (e.g. ArrayHelper). When you use a helper,
you should only use the concrete version and never use the base
class.

16.1.1 Core Helper Classes

The following core helper classes are provided in the Yii releases:
• ArrayHelper
• Console
• FileHelper
• FormatConverter
• Html
• HtmlPuri�er
• Imagine (provided by yii2-imagine extension)

549

550 CHAPTER 16. HELPERS

• In�ector
• Json
• Markdown
• StringHelper
• Url
• VarDumper

16.1.2 Customizing Helper Classes

To customize a core helper class (e.g. yii\helpers\ArrayHelper), you
should create a new class extending from the helpers corresponding base
class (e.g. yii\helpers\BaseArrayHelper) and name your class the same
as the corresponding concrete class (e.g. yii\helpers\ArrayHelper), in-
cluding its namespace. This class will then be set up to replace the original
implementation of the framework.

The following example shows how to customize the yii\helpers\ArrayHelper
::merge() method of the yii\helpers\ArrayHelper class:

<?php

namespace yii\helpers;

class ArrayHelper extends BaseArrayHelper

{

public static function merge($a, $b)

{

// your custom implementation

}

}

Save your class in a �le named ArrayHelper.php. The �le can be in any
directory, for example @app/components.

Next, in your application's entry script, add the following line of code
after including the yii.php �le to tell the Yii class autoloader to load your
custom class instead of the original helper class from the framework:

Yii::$classMap['yii\helpers\ArrayHelper'] = '@app/components/ArrayHelper.php

';

Note that customizing of helper classes is only useful if you want to change
the behavior of an existing function of the helpers. If you want to add addi-
tional functions to use in your application you may better create a separate
helper for that.

16.2 ArrayHelper

Additionally to the rich set of PHP array functions1, the Yii array helper
provides extra static methods allowing you to deal with arrays more e�-

1http://php.net/manual/en/book.array.php

http://php.net/manual/en/book.array.php

16.2. ARRAYHELPER 551

ciently.

16.2.1 Getting Values

Retrieving values from an array, an object or a complex structure consisting
of both using standard PHP is quite repetitive. You have to check if key
exists with isset �rst, then if it does you're getting it, if not, providing
default value:

class User

{

public $name = 'Alex';

}

$array = [

'foo' => [

'bar' => new User(),

]

];

$value = isset($array['foo']['bar']->name) ? $array['foo']['bar']->name :

null;

Yii provides a very convenient method to do it:

$value = ArrayHelper::getValue($array, 'foo.bar.name');

First method argument is where we're getting value from. Second argument
speci�es how to get the data. It could be one of the following:

• Name of array key or object property to retrieve value from.
• Set of dot separated array keys or object property names. The one
we've used in the example above.

• A callback returning a value.

The callback should be the following:

$fullName = ArrayHelper::getValue($user, function ($user, $defaultValue) {

return $user->firstName . ' ' . $user->lastName;

});

Third optional argument is default value which is null if not speci�ed. Could
be used as follows:

$username = ArrayHelper::getValue($comment, 'user.username', 'Unknown');

In case you want to get the value and then immediately remove it from array
you can use remove method:

$array = ['type' => 'A', 'options' => [1, 2]];

$type = ArrayHelper::remove($array, 'type');

After executing the code $array will contain ['options' => [1, 2]] and $type

will be A. Note that unlike getValue method, remove supports simple key
names only.

552 CHAPTER 16. HELPERS

16.2.2 Checking Existence of Keys

ArrayHelper::keyExists works the same way as array_key_exists2 except that
it also supports case-insensitive key comparison. For example,

$data1 = [

'userName' => 'Alex',

];

$data2 = [

'username' => 'Carsten',

];

if (!ArrayHelper::keyExists('username', $data1, false) || !ArrayHelper::

keyExists('username', $data2, false)) {

echo "Please provide username.";

}

16.2.3 Retrieving Columns

Often you need to get a column of values from array of data rows or objects.
Common example is getting a list of IDs.

$array = [

['id' => '123', 'data' => 'abc'],

['id' => '345', 'data' => 'def'],

];

$ids = ArrayHelper::getColumn($array, 'id');

The result will be ['123', '345'].

If additional transformations are required or the way of getting value is
complex, second argument could be speci�ed as an anonymous function:

$result = ArrayHelper::getColumn($array, function ($element) {

return $element['id'];

});

16.2.4 Re-indexing Arrays

In order to index an array according to a speci�ed key, the index method
can be used. The input should be either multidimensional array or an array
of objects. The $key can be either a key name of the sub-array, a property
name of object, or an anonymous function that must return the value that
will be used as a key.

The $groups attribute is an array of keys, that will be used to group the
input array into one or more sub-arrays based on keys speci�ed.

If the $key attribute or its value for the particular element is null and
$groups is not de�ned, the array element will be discarded. Otherwise, if

2http://php.net/manual/en/function.array-key-exists.php

http://php.net/manual/en/function.array-key-exists.php

16.2. ARRAYHELPER 553

$groups is speci�ed, array element will be added to the result array without
any key.

For example:

$array = [

['id' => '123', 'data' => 'abc', 'device' => 'laptop'],

['id' => '345', 'data' => 'def', 'device' => 'tablet'],

['id' => '345', 'data' => 'hgi', 'device' => 'smartphone'],

];

$result = ArrayHelper::index($array, 'id');

The result will be an associative array, where the key is the value of id

attribute:

[

'123' => ['id' => '123', 'data' => 'abc', 'device' => 'laptop'],

'345' => ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone']

// The second element of an original array is overwritten by the last

element because of the same id

]

Anonymous function, passed as a $key, gives the same result:

$result = ArrayHelper::index($array, function ($element) {

return $element['id'];

});

Passing id as a third argument will group $array by id:

$result = ArrayHelper::index($array, null, 'id');

The result will be a multidimensional array grouped by id on the �rst level
and not indexed on the second level:

[

'123' => [

['id' => '123', 'data' => 'abc', 'device' => 'laptop']

],

'345' => [// all elements with this index are present in the result

array

['id' => '345', 'data' => 'def', 'device' => 'tablet'],

['id' => '345', 'data' => 'hgi', 'device' => 'smartphone'],

]

]

An anonymous function can be used in the grouping array as well:

$result = ArrayHelper::index($array, 'data', [function ($element) {

return $element['id'];

}, 'device']);

The result will be a multidimensional array grouped by id on the �rst level,
by device on the second level and indexed by data on the third level:

[

'123' => [

'laptop' => [

554 CHAPTER 16. HELPERS

'abc' => ['id' => '123', 'data' => 'abc', 'device' => 'laptop']

]

],

'345' => [

'tablet' => [

'def' => ['id' => '345', 'data' => 'def', 'device' => 'tablet']

],

'smartphone' => [

'hgi' => ['id' => '345', 'data' => 'hgi', 'device' => '

smartphone']

]

]

]

16.2.5 Building Maps

In order to build a map (key-value pairs) from a multidimensional array or
an array of objects you can use map method. The $from and $to parameters
specify the key names or property names to set up the map. Optionally, one
can further group the map according to a grouping �eld $group. For example,

$array = [

['id' => '123', 'name' => 'aaa', 'class' => 'x'],

['id' => '124', 'name' => 'bbb', 'class' => 'x'],

['id' => '345', 'name' => 'ccc', 'class' => 'y'],

];

$result = ArrayHelper::map($array, 'id', 'name');

// the result is:

// [

// '123' => 'aaa',

// '124' => 'bbb',

// '345' => 'ccc',

//]

$result = ArrayHelper::map($array, 'id', 'name', 'class');

// the result is:

// [

// 'x' => [

// '123' => 'aaa',

// '124' => 'bbb',

//],

// 'y' => [

// '345' => 'ccc',

//],

//]

16.2.6 Multidimensional Sorting

multisort method helps to sort an array of objects or nested arrays by one
or several keys. For example,

16.2. ARRAYHELPER 555

$data = [

['age' => 30, 'name' => 'Alexander'],

['age' => 30, 'name' => 'Brian'],

['age' => 19, 'name' => 'Barney'],

];

ArrayHelper::multisort($data, ['age', 'name'], [SORT_ASC, SORT_DESC]);

After sorting we'll get the following in $data:

[

['age' => 19, 'name' => 'Barney'],

['age' => 30, 'name' => 'Brian'],

['age' => 30, 'name' => 'Alexander'],

];

Second argument that speci�es keys to sort by can be a string if it's a single
key, an array in case of multiple keys or an anonymous function like the
following one:

ArrayHelper::multisort($data, function($item) {

return isset($item['age']) ? ['age', 'name'] : 'name';

});

Third argument is direction. In case of sorting by a single key it could be
either SORT_ASC or SORT_DESC. If sorting by multiple values you can sort each
value di�erently by providing an array of sort direction.

Last argument is PHP sort �ag that could take the same values as the
ones passed to PHP sort()3.

16.2.7 Detecting Array Types

It is handy to know whether an array is indexed or an associative. Here's an
example:

// no keys specified

$indexed = ['Qiang', 'Paul'];

echo ArrayHelper::isIndexed($indexed);

// all keys are strings

$associative = ['framework' => 'Yii', 'version' => '2.0'];

echo ArrayHelper::isAssociative($associative);

16.2.8 HTML Encoding and Decoding Values

In order to encode or decode special characters in an array of strings into
HTML entities you can use the following:

$encoded = ArrayHelper::htmlEncode($data);

$decoded = ArrayHelper::htmlDecode($data);

3http://php.net/manual/en/function.sort.php

http://php.net/manual/en/function.sort.php

556 CHAPTER 16. HELPERS

Only values will be encoded by default. By passing second argument as false
you can encode array's keys as well. Encoding will use application charset
and could be changed via third argument.

16.2.9 Merging Arrays

You can use yii\helpers\ArrayHelper::merge() to merge two or more
arrays into one recursively. If each array has an element with the same
string key value, the latter will overwrite the former (di�erent from ar-
ray_merge_recursive()4). Recursive merging will be conducted if both ar-
rays have an element of array type and are having the same key. For integer-
keyed elements, the elements from the latter array will be appended to the
former array. You can use yii\helpers\UnsetArrayValue object to un-
set value from previous array or yii\helpers\ReplaceArrayValue to force
replace former value instead of recursive merging.

For example:

$array1 = [

'name' => 'Yii',

'version' => '1.1',

'ids' => [

1,

],

'validDomains' => [

'example.com',

'www.example.com',

],

'emails' => [

'admin' => 'admin@example.com',

'dev' => 'dev@example.com',

],

];

$array2 = [

'version' => '2.0',

'ids' => [

2,

],

'validDomains' => new \yii\helpers\ReplaceArrayValue([

'yiiframework.com',

'www.yiiframework.com',

]),

'emails' => [

'dev' => new \yii\helpers\UnsetArrayValue(),

],

];

$result = ArrayHelper::merge($array1, $array2);

The result will be:

4http://php.net/manual/en/function.array-merge-recursive.php

http://php.net/manual/en/function.array-merge-recursive.php

16.2. ARRAYHELPER 557

[

'name' => 'Yii',

'version' => '2.0',

'ids' => [

1,

2,

],

'validDomains' => [

'yiiframework.com',

'www.yiiframework.com',

],

'emails' => [

'admin' => 'admin@example.com',

],

]

16.2.10 Converting Objects to Arrays

Often you need to convert an object or an array of objects into an array.
The most common case is converting active record models in order to serve
data arrays via REST API or use it otherwise. The following code could be
used to do it:

$posts = Post::find()->limit(10)->all();

$data = ArrayHelper::toArray($posts, [

'app\models\Post' => [

'id',

'title',

// the key name in array result => property name

'createTime' => 'created_at',

// the key name in array result => anonymous function

'length' => function ($post) {

return strlen($post->content);

},

],

]);

The �rst argument contains the data we want to convert. In our case we're
converting a Post AR model.

The second argument is conversion mapping per class. We're setting a
mapping for Post model. Each mapping array contains a set of mappings.
Each mapping could be:

• A �eld name to include as is.
• A key-value pair of desired array key name and model column name
to take value from.

• A key-value pair of desired array key name and a callback which returns
value.

The result of conversion above for single model will be:

[

'id' => 123,

558 CHAPTER 16. HELPERS

'title' => 'test',

'createTime' => '2013-01-01 12:00AM',

'length' => 301,

]

It is possible to provide default way of converting object to array for a speci�c
class by implementing yii\base\Arrayable interface in that class.

16.2.11 Testing against Arrays

Often you need to check if an element is in an array or a set of elements
is a subset of another. While PHP o�ers in_array(), this does not support
subsets or \Traversable objects.

To aid these kinds of tests, yii\helpers\ArrayHelper provides yii

\helpers\ArrayHelper::isIn() and yii\helpers\ArrayHelper::isSubset()
with the same signature as in_array()5.

// true

ArrayHelper::isIn('a', ['a']);

// true

ArrayHelper::isIn('a', new ArrayObject(['a']));

// true

ArrayHelper::isSubset(new ArrayObject(['a', 'c']), new ArrayObject(['a', 'b'

, 'c']));

16.3 Html helper

Every web application generates lots of HTML markup. If the markup is
static, it can be done e�ciently by mixing PHP and HTML in a single �le6,
but when it is generated dynamically it starts to get tricky to handle it
without extra help. Yii provides such help in the form of an Html helper,
which provides a set of static methods for handling commonly used HTML
tags, their options, and their content.

Note: If your markup is nearly static, it's better to use HTML
directly. There's no need to wrap absolutely everything in Html
helper calls.

16.3.1 Basics

Since building dynamic HTML by string concatenation can get messy very
fast, Yii provides a set of methods to manipulate tag options and build tags
based on these options.

5http://php.net/manual/en/function.in-array.php
6http://php.net/manual/en/language.basic-syntax.phpmode.php

http://php.net/manual/en/function.in-array.php
http://php.net/manual/en/language.basic-syntax.phpmode.php

16.3. HTML HELPER 559

Generating Tags

The code for generating a tag looks like the following:

<?= Html::tag('p', Html::encode($user->name), ['class' => 'username']) ?>

The �rst argument is the tag name. The second one is the content to be
enclosed between the start and end tags. Note that we are using Html::encode

— that's because the content isn't encoded automatically to allow
using HTML when needed. The third one is an array of HTML options,
or in other words, tag attributes. In this array the key is the name of the
attribute (such as class, href or target), and the value is its value.

The code above will generate the following HTML:

<p class="username">samdark</p>

In case you need just an opening or closing tag, you can use the Html::

beginTag() and Html::endTag() methods.
Options are used in many methods of the Html helper and various wid-

gets. In all these cases there is some extra handling to know about:
• If a value is null, the corresponding attribute will not be rendered.
• Attributes whose values are of boolean type will be treated as boolean
attributes7.

• The values of attributes will be HTML-encoded using yii\helpers

\Html::encode().
• If the value of an attribute is an array, it will be handled as follows:

� If the attribute is a data attribute as listed in yii\helpers\Html

::$dataAttributes, such as data or ng, a list of attributes will be
rendered, one for each element in the value array. For example, '
data' => ['id' => 1, 'name' => 'yii'] generates data-id="1" data-

name="yii"; and 'data' => ['params' => ['id' => 1, 'name' => 'yii

'], 'status' => 'ok'] generates data-params='{"id":1,"name":"yii"

}' data-status="ok". Note that in the latter example JSON format
is used to render a sub-array.

� If the attribute is NOT a data attribute, the value will be JSON-
encoded. For example, ['params' => ['id' => 1, 'name' => 'yii']

generates params='{"id":1,"name":"yii"}'.

Forming CSS Classes and Styles

When building options for HTML tags we often start with defaults which
we need to modify. In order to add or remove a CSS class you can use the
following:

$options = ['class' => 'btn btn-default'];

if ($type === 'success') {

7http://www.w3.org/TR/html5/infrastructure.html#boolean-attributes

http://www.w3.org/TR/html5/infrastructure.html#boolean-attributes

560 CHAPTER 16. HELPERS

Html::removeCssClass($options, 'btn-default');

Html::addCssClass($options, 'btn-success');

}

echo Html::tag('div', 'Pwede na', $options);

// if the value of $type is 'success' it will render

// <div class="btn btn-success">Pwede na</div>

You may specify multiple CSS classes using the array style as well:

$options = ['class' => ['btn', 'btn-default']];

echo Html::tag('div', 'Save', $options);

// renders '<div class="btn btn-default">Save</div>'

You may also use the array style when adding or removing classes:

$options = ['class' => 'btn'];

if ($type === 'success') {

Html::addCssClass($options, ['btn-success', 'btn-lg']);

}

echo Html::tag('div', 'Save', $options);

// renders '<div class="btn btn-success btn-lg">Save</div>'

Html::addCssClass() prevents duplication, so you don't need to worry about
the same class appearing twice:

$options = ['class' => 'btn btn-default'];

Html::addCssClass($options, 'btn-default'); // class 'btn-default' is

already present

echo Html::tag('div', 'Save', $options);

// renders '<div class="btn btn-default">Save</div>'

If the CSS class option is speci�ed using the array style, you may use a
named key to mark the logical purpose of the class. In this case, a class with
the same key in the array style will be ignored in Html::addCssClass():

$options = [

'class' => [

'btn',

'theme' => 'btn-default',

]

];

Html::addCssClass($options, ['theme' => 'btn-success']); // 'theme' key is

already taken

echo Html::tag('div', 'Save', $options);

// renders '<div class="btn btn-default">Save</div>'

CSS styles can be set up in similar way using the style attribute:

16.3. HTML HELPER 561

$options = ['style' => ['width' => '100px', 'height' => '100px']];

// gives style="width: 100px; height: 200px; position: absolute;"

Html::addCssStyle($options, 'height: 200px; position: absolute;');

// gives style="position: absolute;"

Html::removeCssStyle($options, ['width', 'height']);

When using yii\helpers\Html::addCssStyle(), you can specify either an
array of key-value pairs, corresponding to CSS property names and values, or
a string such as width: 100px; height: 200px;. These formats can be conver-
ted from one to the other using yii\helpers\Html::cssStyleFromArray()

and yii\helpers\Html::cssStyleToArray(). The yii\helpers\Html::

removeCssStyle() method accepts an array of properties to remove. If it's
a single property, it can be speci�ed as a string.

Encoding and Decoding Content

In order for content to be displayed properly and securely in HTML, special
characters in the content should be encoded. In PHP this is done with
htmlspecialchars8 and htmlspecialchars_decode9. The issue with using these
methods directly is that you have to specify encoding and extra �ags all the
time. Since these �ags are the same all the time and the encoding should
match the one of the application in order to prevent security issues, Yii
provides two compact and simple-to-use methods:

$userName = Html::encode($user->name);

echo $userName;

$decodedUserName = Html::decode($userName);

16.3.2 Forms

Dealing with form markup is quite repetitive and error prone. Because of
that, there is a group of methods to help dealing with them.

Note: consider using yii\widgets\ActiveForm in case you're
dealing with models and need validation.

Creating Forms

Forms can be opened with yii\helpers\Html::beginForm() method like
the following:

<?= Html::beginForm(['order/update', 'id' => $id], 'post', ['enctype' => '

multipart/form-data']) ?>

8http://www.php.net/manual/en/function.htmlspecialchars.php
9http://www.php.net/manual/en/function.htmlspecialchars-decode.php

http://www.php.net/manual/en/function.htmlspecialchars.php
http://www.php.net/manual/en/function.htmlspecialchars-decode.php

562 CHAPTER 16. HELPERS

The �rst argument is the URL the form will be submitted to. It can be
speci�ed in the form of a Yii route and parameters accepted by yii\helpers

\Url::to(). The second one is the method to use. post is the default. The
third one is an array of options for the form tag. In this case we're changing
the encoding of the form data in the POST request to multipart/form-data,
which is required in order to upload �les.

Closing the form tag is simple:

<?= Html::endForm() ?>

Buttons

In order to generate buttons, you can use the following code:

<?= Html::button('Press me!', ['class' => 'teaser']) ?>

<?= Html::submitButton('Submit', ['class' => 'submit']) ?>

<?= Html::resetButton('Reset', ['class' => 'reset']) ?>

The �rst argument for all three methods is the button title, and the second
one is an array of options. The title isn't encoded, so if you're displaying
data from the end user, encode it with yii\helpers\Html::encode().

Input Fields

There are two groups of input methods. The ones starting with active, which
are called active inputs, and the ones not starting with it. Active inputs take
data from the model and attribute speci�ed, while in the case of a regular
input, data is speci�ed directly.

The most generic methods are:

type, input name, input value, options

<?= Html::input('text', 'username', $user->name, ['class' => $username]) ?>

type, model, model attribute name, options

<?= Html::activeInput('text', $user, 'name', ['class' => $username]) ?>

If you know the input type in advance, it's more convenient to use the short-
cut methods:

• yii\helpers\Html::buttonInput()

• yii\helpers\Html::submitInput()

• yii\helpers\Html::resetInput()

• yii\helpers\Html::textInput(), yii\helpers\Html::activeTextInput()
• yii\helpers\Html::hiddenInput(), yii\helpers\Html::activeHiddenInput()
• yii\helpers\Html::passwordInput() / yii\helpers\Html::activePasswordInput()
• yii\helpers\Html::fileInput(), yii\helpers\Html::activeFileInput()
• yii\helpers\Html::textarea(), yii\helpers\Html::activeTextarea()

Radios and checkboxes are a bit di�erent in terms of method signature:

16.3. HTML HELPER 563

<?= Html::radio('agree', true, ['label' => 'I agree']);

<?= Html::activeRadio($model, 'agree', ['class' => 'agreement'])

<?= Html::checkbox('agree', true, ['label' => 'I agree']);

<?= Html::activeCheckbox($model, 'agree', ['class' => 'agreement'])

Dropdown lists and list boxes can be rendered like the following:

<?= Html::dropDownList('list', $currentUserId, ArrayHelper::map($userModels,

'id', 'name')) ?>

<?= Html::activeDropDownList($users, 'id', ArrayHelper::map($userModels, 'id

', 'name')) ?>

<?= Html::listBox('list', $currentUserId, ArrayHelper::map($userModels, 'id'

, 'name')) ?>

<?= Html::activeListBox($users, 'id', ArrayHelper::map($userModels, 'id', '

name')) ?>

The �rst argument is the name of the input, the second one is the value
that's currently selected, and the third one is an array of key-value pairs,
where the array key is the list value and the array value is the list label.

If you want multiple choices to be selectable, you can use a checkbox list:

<?= Html::checkboxList('roles', [16, 42], ArrayHelper::map($roleModels, 'id'

, 'name')) ?>

<?= Html::activeCheckboxList($user, 'role', ArrayHelper::map($roleModels, '

id', 'name')) ?>

If not, use radio list:

<?= Html::radioList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', '

name')) ?>

<?= Html::activeRadioList($user, 'role', ArrayHelper::map($roleModels, 'id',

'name')) ?>

Labels and Errors

Same as inputs, there are two methods for generating form labels. Act-
ive, which takes data from the model, and non-active, which accepts data
directly:

<?= Html::label('User name', 'username', ['class' => 'label username']) ?>

<?= Html::activeLabel($user, 'username', ['class' => 'label username']) ?>

In order to display form errors from a model or models as a summary, you
could use:

<?= Html::errorSummary($posts, ['class' => 'errors']) ?>

To display an individual error:

<?= Html::error($post, 'title', ['class' => 'error']) ?>

564 CHAPTER 16. HELPERS

Input Names and Values

There are methods to get names, ids and values for input �elds based on the
model. These are mainly used internally, but could be handy sometimes:

// Post[title]

echo Html::getInputName($post, 'title');

// post-title

echo Html::getInputId($post, 'title');

// my first post

echo Html::getAttributeValue($post, 'title');

// $post->authors[0]

echo Html::getAttributeValue($post, '[0]authors[0]');

In the above, the �rst argument is the model, while the second one is the
attribute expression. In its simplest form the expression is just an attribute
name, but it can be an attribute name pre�xed and/or su�xed with array
indexes, which is mainly used for tabular input:

• [0]content is used in tabular data input to represent the content attrib-
ute for the �rst model in tabular input;

• dates[0] represents the �rst array element of the dates attribute;
• [0]dates[0] represents the �rst array element of the dates attribute for
the �rst model in tabular input.

In order to get the attribute name without su�xes or pre�xes, one can use
the following:

// dates

echo Html::getAttributeName('dates[0]');

16.3.3 Styles and Scripts

There are two methods to generate tags wrapping embedded styles and
scripts:

<?= Html::style('.danger { color: #f00; }') ?>

Gives you

<style>.danger { color: #f00; }</style>

<?= Html::script('alert("Hello!");', ['defer' => true]);

Gives you

<script defer>alert("Hello!");</script>

If you want to use an external style in a CSS �le:

16.3. HTML HELPER 565

<?= Html::cssFile('@web/css/ie5.css', ['condition' => 'IE 5']) ?>

generates

<!--[if IE 5]>

<link href="http://example.com/css/ie5.css" />

<![endif]-->

The �rst argument is the URL. The second one is an array of options. In
addition to the regular options, you can specify:

• condition to wrap <link in conditional comments with the speci�ed
condition. Hope you won't need conditional comments ever ;)

• noscript can be set to true to wrap <link in a <noscript> tag so it will be
included only when there's either no JavaScript support in the browser
or it was disabled by the user.

To link a JavaScript �le:

<?= Html::jsFile('@web/js/main.js') ?>

Same as with CSS, the �rst argument speci�es the URL of the �le to be
included. Options can be passed as the second argument. In the options you
can specify condition in the same way as in the options for cssFile.

16.3.4 Hyperlinks

There's a method to generate hyperlinks conveniently:

<?= Html::a('Profile', ['user/view', 'id' => $id], ['class' => 'profile-link

']) ?>

The �rst argument is the title. It's not encoded, so if you're using data
entered by the user, you need to encode it with Html::encode(). The second
argument is what will be in the href attribute of the <a tag. See Url::to()
for details on what values it accepts. The third argument is an array of tag
attributes.

If you need to generate mailto links, you can use the following code:

<?= Html::mailto('Contact us', 'admin@example.com') ?>

16.3.5 Images

In order to generate an image tag, use the following:

<?= Html::img('@web/images/logo.png', ['alt' => 'My logo']) ?>

generates

Besides aliases, the �rst argument can accept routes, parameters and URLs,
in the same way Url::to() does.

566 CHAPTER 16. HELPERS

16.3.6 Lists

Unordered list can be generated like the following:

<?= Html::ul($posts, ['item' => function($item, $index) {

return Html::tag(

'li',

$this->render('post', ['item' => $item]),

['class' => 'post']

);

}]) ?>

In order to get ordered list, use Html::ol() instead.

16.4 Url Helper

Url helper provides a set of static methods for managing URLs.

16.4.1 Getting Common URLs

There are two methods you can use to get common URLs: home URL and
base URL of the current request. In order to get home URL, use the follow-
ing:

$relativeHomeUrl = Url::home();

$absoluteHomeUrl = Url::home(true);

$httpsAbsoluteHomeUrl = Url::home('https');

If no parameter is passed, the generated URL is relative. You can either
pass true to get an absolute URL for the current schema or specify a schema
explicitly (https, http).

To get the base URL of the current request use the following:

$relativeBaseUrl = Url::base();

$absoluteBaseUrl = Url::base(true);

$httpsAbsoluteBaseUrl = Url::base('https');

The only parameter of the method works exactly the same as for Url::home().

16.4.2 Creating URLs

In order to create a URL to a given route use the Url::toRoute() method.
The method uses \yii\web\UrlManager to create a URL:

$url = Url::toRoute(['product/view', 'id' => 42]);

You may specify the route as a string, e.g., site/index. You may also use an
array if you want to specify additional query parameters for the URL being
created. The array format must be:

// generates: /index.php?r=site%2Findex¶m1=value1¶m2=value2

['site/index', 'param1' => 'value1', 'param2' => 'value2']

16.4. URL HELPER 567

If you want to create a URL with an anchor, you can use the array format
with a # parameter. For example,

// generates: /index.php?r=site%2Findex¶m1=value1#name

['site/index', 'param1' => 'value1', '#' => 'name']

A route may be either absolute or relative. An absolute route has a leading
slash (e.g. /site/index) while a relative route has none (e.g. site/index

or index). A relative route will be converted into an absolute one by the
following rules:

• If the route is an empty string, the current \yii\web\Controller::
route will be used;

• If the route contains no slashes at all (e.g. index), it is considered to
be an action ID of the current controller and will be prepended with
\yii\web\Controller::uniqueId;

• If the route has no leading slash (e.g. site/index), it is considered to
be a route relative to the current module and will be prepended with
the module's \yii\base\Module::uniqueId.

Starting from version 2.0.2, you may specify a route in terms of an alias. If
this is the case, the alias will �rst be converted into the actual route which
will then be turned into an absolute route according to the above rules.

Below are some examples of using this method:

// /index.php?r=site%2Findex

echo Url::toRoute('site/index');

// /index.php?r=site%2Findex&src=ref1#name

echo Url::toRoute(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post%2Fedit&id=100 assume the alias "@postEdit" is

defined as "post/edit"

echo Url::toRoute(['@postEdit', 'id' => 100]);

// http://www.example.com/index.php?r=site%2Findex

echo Url::toRoute('site/index', true);

// https://www.example.com/index.php?r=site%2Findex

echo Url::toRoute('site/index', 'https');

There's another method Url::to() that is very similar to toRoute(). The
only di�erence is that this method requires a route to be speci�ed as an array
only. If a string is given, it will be treated as a URL.

The �rst argument could be:

• an array: toRoute() will be called to generate the URL. For example:
['site/index'], ['post/index', 'page' => 2]. Please refer to toRoute()

for more details on how to specify a route.
• a string with a leading @: it is treated as an alias, and the corresponding
aliased string will be returned.

• an empty string: the currently requested URL will be returned;

568 CHAPTER 16. HELPERS

• a normal string: it will be returned as is.
When $scheme is speci�ed (either a string or true), an absolute URL with host
info (obtained from \yii\web\UrlManager::hostInfo) will be returned. If
$url is already an absolute URL, its scheme will be replaced with the speci�ed
one.

Below are some usage examples:

// /index.php?r=site%2Findex

echo Url::to(['site/index']);

// /index.php?r=site%2Findex&src=ref1#name

echo Url::to(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post%2Fedit&id=100 assume the alias "@postEdit" is

defined as "post/edit"

echo Url::to(['@postEdit', 'id' => 100]);

// the currently requested URL

echo Url::to();

// /images/logo.gif

echo Url::to('@web/images/logo.gif');

// images/logo.gif

echo Url::to('images/logo.gif');

// http://www.example.com/images/logo.gif

echo Url::to('@web/images/logo.gif', true);

// https://www.example.com/images/logo.gif

echo Url::to('@web/images/logo.gif', 'https');

Starting from version 2.0.3, you may use yii\helpers\Url::current() to
create a URL based on the currently requested route and GET parameters.
You may modify or remove some of the GET parameters or add new ones
by passing a $params parameter to the method. For example,

// assume $_GET = ['id' => 123, 'src' => 'google'], current route is "post/

view"

// /index.php?r=post%2Fview&id=123&src=google

echo Url::current();

// /index.php?r=post%2Fview&id=123

echo Url::current(['src' => null]);

// /index.php?r=post%2Fview&id=100&src=google

echo Url::current(['id' => 100]);

16.4.3 Remember URLs

There are cases when you need to remember URL and afterwards use it
during processing of the one of sequential requests. It can be achieved in the

16.4. URL HELPER 569

following way:

// Remember current URL

Url::remember();

// Remember URL specified. See Url::to() for argument format.

Url::remember(['product/view', 'id' => 42]);

// Remember URL specified with a name given

Url::remember(['product/view', 'id' => 42], 'product');

In the next request we can get URL remembered in the following way:

$url = Url::previous();

$productUrl = Url::previous('product');

16.4.4 Checking Relative URLs

To �nd out if URL is relative i.e. it doesn't have host info part, you can use
the following code:

$isRelative = Url::isRelative('test/it');

	Introduction
	What is Yii
	Upgrading from Version 1.1

	Getting Started
	Installing Yii
	Running Applications
	Saying Hello
	Working with Forms
	Working with Databases
	Generating Code with Gii
	Looking Ahead

	Application Structure
	Overview
	Entry Scripts
	Applications
	Application Components
	Controllers
	Models
	Views
	Modules
	Filters
	Widgets
	Assets
	Extensions

	Handling Requests
	Overview
	Bootstrapping
	Routing and URL Creation
	Requests
	Responses
	Sessions and Cookies
	Handling Errors
	Logging

	Key Concepts
	Components
	Properties
	Events
	Behaviors
	Configurations
	Aliases
	Class Autoloading
	Service Locator
	Dependency Injection Container

	Working with Databases
	Database Access Objects
	Query Builder
	Active Record
	Database Migration

	Getting Data from Users
	Creating Forms
	Validating Input
	Uploading Files
	Collecting tabular input
	Getting Data for Multiple Models

	Displaying Data
	Data Formatting
	Pagination
	Sorting
	Data Providers
	Data widgets
	Working with Client Scripts
	Theming

	Security
	Security
	Authentication
	Authorization
	Working with Passwords
	Cryptography
	Security best practices

	Caching
	Caching
	Data Caching
	Fragment Caching
	Page Caching
	HTTP Caching

	RESTful Web Services
	Quick Start
	Resources
	Controllers
	Routing
	Response Formatting
	Authentication
	Rate Limiting
	Versioning
	Error Handling

	Development Tools
	Testing
	Testing
	Testing environment setup
	Unit Tests
	Functional Tests
	Acceptance Tests
	Fixtures
	Managing Fixtures

	Special Topics
	Creating your own Application structure
	Console applications
	Core Validators
	Internationalization
	Mailing
	Performance Tuning
	Shared Hosting Environment
	Using template engines
	Working with Third-Party Code

	Widgets
	Helpers
	Helpers
	ArrayHelper
	Html helper
	Url Helper

